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A new type of in-depth microscopic analysis is presented for the Yard-Sale model, one of the most well known multi-agent market exchange models. This approach led to the classification

and study of the individual strategies carried out by the agents undergoing transactions. The findings allowed to determine a region of parameters for which the strategies are successful,

and in particular, the existence of an optimal strategy. Strategies that maximize the individual wealth of each agent were then found by incorporating machine learning techniques and
performing their training through a genetic algorithm. It was found that the addition of trained agents in these systems leads to an increase in wealth inequality at the collective level.

1. Wealth inequality

It is a well known fact that different countries around the world exhibit highly unequal wealth
distributions. This phenomenon has not only been observed in many societies at different scales,
but has been present repeatedly throughout history.

These observations lead to the following question: is this kind of behavior inherent
to societies themselves?

2. The Yard-Sale model

Simplified models based on ensembles of economic agents have been proposed in the past
decades to try to explain this kind of behavior. In particular, the so called Yard-Sale Model (YSM)
is one of the most studied in the field.

The YSM is defined in a system of N agents, each of them characterized by their wealth wand a
risk propensity r that determines the fraction of wealth that will take part in the interaction.
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To avoid wealth condensation in a single agent, an asymmetry is added to the distribution of
7)i,j that favors the poorest of the agents i and jin a single transaction:
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Simulations made with the YSM are
able to replicate certain characteristics
found in empirical data, such as wealth
distributions that exhibit power-law tails,
and exponential behavior at the region of
lower income, among others. This model
has proven to show interesting results at
the macroscopic level, but studies
regarding its microscopic aspects have
hardly been explored.
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With the goal of studying the
individual behavior of the agents and
how it leads to the well known
macroscopic results, we recorded the
final state of a large number of agents
(obtained from 103simulations of 104
agents each one).

For a better visualization of the
data, we define a density function
p(r, w) which takes increasing values
with the amount of agents in a certain
region of r — w space. It is of special
interest to note the existence of the
critical risk factor rej(, such that
agents with rabove that value will
always end up losing all their wealth.
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This critical risk allowed for a Loser strategies

classification of winner and loser
strategies in this model, which
depend on the values of the
parameters fand r, and also turned
out to be scale invariant. Another
interpretation of such classification is
that it is possible to estimate how
much wealth should be risked in . .
different types of societies. 1 e
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3. Incorporating rationality

We use an evolutionary algorithm to evolve a
system of N agents, initialized with wealths and
risks uniformly distributed in the interval (0, 1).
The fitness of each agent is then calculated as the
average wealth obtained after Tgen Monte Carlo
steps (MCS), where a MCS is defined as N/2 YSM
transactions in the system. A new generation of
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o e agents is then created, where each new agent is an
imperfect copy of an agent of the previous
generation, selected with a probability proportional
to its calculated fitness. The system is then reset to
a new random initial condition. The process
iterates until convergence to a solution is reached.
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The histograms of the average
wealth per agent (w;) as a function

of risk were plotted, as shown in the
top panels. The presence of local
maxima in these curves shows the
existence of an optimal risk ropq that
increases with f. Then, systems of

N = 10° rational agents endowed

with neural networks with their
risks as their only input were
trained until reaching convergence.

It is clearly observed that the
highest density of agents is centered
at the optimal risk previously found
in the curves, where each agent
maximizes their average wealth.
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4. The personal wealth as input
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A system with a fraction of 10%
rational agents was trained.

When the functions were plotted in a
density map after reaching convergence, it
was found that the solution consisted in
increasing the risk as the wealth
increases.

Then, to test whether the solution
found is successful or not, the average
wealth obtained at every time step was
compared between the trained agents,
those with rope, and all of the irrational
agents.

It can be seen that the trained agents
obtain the highest average wealth at all
times.

By studying macroscopic aspects of the
system such as the Gini index and wealth
distributions, a progressive increase in

inequality was found when the system had a
larger subgroup of rational agents. It was also
found that wealth distributions approach power
laws in the entire wealth range for certain values
of the social protection factor f.
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5. Incorporating the opponent’s bet
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When agents were given both their
personal wealth and the wealth
fraction risked by the opposing part, it
was found that the trained subgroup
reaches wealth values an order of
magnitude higher than the rest,
verifying that the solutions found
provide a great advantage. In this case,
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the solutions found by the agents
showed regions in the w;-r;w; plane
for which they chose not to interact.
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It was also found that they could estimate when it would be convenient to perform a transaction.
The trained agents could know when an interaction would be favorable by taking into account the

effect of the social protection factor.

They were also capable of being selective by choosing not to interact when their w became

sufficiently high.

6x10"

0.0

5x10°

"
4x10™ 2.5x10

3x10* ~ "
x10% T, £ 5.0x10
i 4
2x10*
7.5x10"
1x10"

Rational
Irrational
1 1 L

s
0 1.0x10

0 2x10° 4x10° 6x10° 8x10° 1x10°

1(MCS)

a

1x10°
1 (MCS)

4x10°  8x10° 1x10° 2x10°

£(MCS) 1(MCS)

2x10

the collective level.

In general, it was found that the fact that every agent is endowed with a certain
ambition to maximize their personal wealth, compatible with the individualistic
wealth distribution model proposed, always leads to a higher wealth inequality at
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