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2. Multifractal Analysis

The single-day profile Uν is defined by the cumulation of single-window (local)
mean interevent times ∆tνi : Uν(i) =

∑i
i′=1 ∆tνi′, which defines a directed

(climbing) random walk (index i is defined in the paragraph below).

The intraday autocorrelation of the absolute detrended profile is defined
for a single day ν and a given time scale s,

F 2(j; ν, s) =
1

s− j

s−j∑
i=1

|U(i+ j)− yν(i+ j)| · |U(i)− yν(i)|, ν = 1, . . . , Nd,

where j = 0, . . . , s − 1, defines time-step distance or number of time win-
dows of length ∆ between both absolute deviations (detrended fluctuations)
|Uν − yν| present at day ν at time steps i and i + j (1 ≤ i ≤ s numbers the
current time window), s is the total number of time windows within a single
replica ν, 1 ≤ ν ≤ Nd , and Nd is the number of trading days. Apparently, for
j = 0 the detrended autocorrelation function becomes a detrended fluctua-
tion function. Therefore, we can introduce the notation F 2(ν, s) = F 2(0; ν, s).

Generalized Hurst exponent h(q) can be estimated using the q-dispersive
function Fq(s)

Fq(s) =

N−1
d

Nd∑
ν=1

[
F 2(ν; s)

]q/2

1/q

, lnFq(s) ≈ h(q) ln(s) + B(q).
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On the left, there are plots of Fq(s) vs s in the log-log scale for empirical data
for different values of −10 ≤ q ≤ 10. Vertical dashed lines define the region
of scaling, where h(q) can be estimated.
Finally, we can calculate Rényi scaling exponent τ (q) and the spectrum of
singularities using the Legendre-Fenchel transformation:

τ (q) = qh(q)− h(q = 1), α(q) =
dτ (q)

dq
, f (α(q)) = qα(q)− τ (q),

where α is a local dimension (singularity or Hölder exponent), while f (α) is
its distribution. For the monofractal structure the scaling exponent τ (q) is a
linear function of q, while for multifractal it is the non-linear one.
We can also calculate specific heat c(q) = −q2dα(q)

dq , used to investigate thermal
stability.

1. Intraday Activity

Δ 
ν=1

Δ 
ν=2

Δ 
ν=3

Δ 
ν=N

...

d

T

i i+1

ti
ν

Δ 

Δ 

ti,l
νΔ 

Activity of market participants varies during trading
hours. Mean time between transactions is the low-
est at the beginning and ending of the trading, and
is the highest in the middle. This lunch effect is a
signature of the non-stationarity of the price process.
We split trading day into windows of length ∆ and
calculate mean intertrade time in every window. The
scheme of the procedure is shown in the left figure.
We use financial tick-by-tick data for KGHM - one of
the most liquid stock from Warsaw Stock Exchange.
The right graph presents result for the exemplary day

using 5-minute time windows. Non-stationarity can be clearly seen. Typically, local clusters of spikes around their local
maximums are well visible. We observe the highest maxima in the vicinity of the lunch time. Such a long-term structure
constitutes a source of generalized ”volatility clustering” of detrended interevent times’ series fluctuations and hence
their multifractality.

3. Multifractal Spectra
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The q-dependence of main characteristics of multifractality. The nonlinear dependence of these characteristics on q is
well seen. Plots present dependence on q of the generalized Hurst exponent h(q), Rényi scaling exponent τ (q) and
the coarse Hölder exponent α(q), respectively. Additional dark green solid curves presented on all plots were obtained
from the time series generated by the Poisson process. Apparently, their variations are negligible which means that the
influence of a finite size effect on a time series with a size equal to the empirical one is negligible.
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Plots (a) and (b) are different views of spectrum of dimensions f (α) vs α, and (c) is specific heat c(q) vs q. Vertical
lines marked by a and c define the range of q where peak c(q) ≥ 0 that is, the range of thermal stability of the part
of the system defined by the main (longest, increasing) branch of spectrum of dimensions. Apparently, also the side
branch containing points B1 and A2 is thermally stable. Notably, at turning points A1, B1, C the second order phase
transitions occur. The vertical dashed line displayed on plot (b) in point α(q = 1), determines the position of the
tangent dashed straight line with a slope of 1.0 for the main branch. This is a verification of the contact character of
the L-F transform, which obeys: f (α(q = 1)) = α(q = 1) and df (α)

dα |q=1= 1.0.

4. Phase Transitions
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The illustration of the Ehrenfest like classification of phase tran-
sitions. The first (black and blue solid curve) and second (four
separated red solid curves) derivatives of f over α showing
three two-branched second order singularities of f vs α. Three
dashed vertical straight lines (vertical asymptotics) c, b, and
a are located, indeed, at α coordinates of singularities. The
main branch of derivative df/dα is represented by the black
and blue curve (C,D2, B2, X1, A1) containing also the inflec-
tion point IP3. The corresponding red curve of the second
derivative d2f/dα2 contains the replica of the inflection point
IP3 which diverges at asymptotics c and a. This curve is sin-
gular at turning points: the left one at α coordinate of point
C and the right one at α coordinate of point A1. The other
three singular curves (also in red) are associated with three side
branches of the first derivative df/dα.
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