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Abstract

Spreading processes play an important role in modeling diffusion networks and information propagation. Recent real-world events further highlight the need for prediction and control of
diffusion dynamics. To tackle these tasks, it is essential to learn the effective spreading model and transmission probabilities across the network of interactions. In most cases not only the
transmission rates are unknown, but also full observation of the dynamics is not available. As a result, standard approaches such as maximum likelihood quickly become intractable for large
networks. In this work, we study the Independent Cascade model. We introduce an efficient algorithm, based on dynamic message-passing approach, which is able to learn parameters of the
effective spreading model given only limited information. Importantly, we show that the resulting model approximates the marginal activation probabilities that can be used for prediction.
Additionally, we develop a systematic procedure for learning a mixture of models which further improves the prediction quality.

Learning Framework

We focus on approximating pci(t) - the probability of node i to be active at time t under the cascade
c. DMP equations for the IC model allow one approximate this probability:

pci(t) = 1−
(
1− p̄ci

) ∏
k∈∂i

(
1− αki · pck→i(t− 1)

)
, (1)

pcj→i(t) = 1−
(
1− p̄cj

) ∏
k∈∂j\i

(
1− αkj · pck→j(t− 1)

)
, (2)

where αij are the transmission rates and pcj→i(t) are the probabilities of node j being active at time
t, on an auxiliary graph without node i. These equations are further used in our learning scheme,
which focuses on optimising a following Lagrange function:

L = O︸︷︷︸
objective

+ C︸︷︷︸
constrains

, (3)

where the objective is to maximise the probability of observed cascades, while the constrains are the
DMP equations. The former can be written in a form of log likelihood sum.

O =
∑
c∈C

∑
i∈O

log µci(τ
c
i ), (4)

where τ ci is the observed activation time of node i, under cascade c and µci(t) is the marginal proba-
bility of node i being activated at time t. The latter can be computed from the probabilities obtained
by DMP. Finally, we use Lagrange equations in a gradient descent approach, to find the optimal
transmission rates:

αij = αij + ε · ∂L
∂αij

. (5)

This step is repeated until convergence.

Estimating Model Parameters

We use the above framework to find transmission rates for different types of network with different
number of unobserved nodes. Some of the results are shown below.
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Fig. 1: The difference between inferred and real parameters αij, as a function of number of available cascades. Regular graph on the right.

We can see that introducing loops leads to a gap between the real and estimated parameters. We
further test it by repeating the inference for a large and loopy real-world network, as well as a square
lattice in case of long cascades.
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Fig. 2: The difference between inferred and real parameters αij, as a function of number of available cascades in case of a large (N = 121, 422)

real-world network obtained by a web-crawler on the left and in case of long cascades (T = 20) on a square lattice.

As expected, longer cascades increase the size of the gap in case of the square lattice, but as shown
in the next part, the gap is created in an attempt to fit the marginals and increase the prediction
capabilities of the model. One of the main advantages of the proposed method is its numerical
complexity. The reason why we were able to produce results for networks of size N = 105 and even
N = 106 is that our algorithm scales linearly with number of edges |E|, number of cascades M and
cascades size T .

Estimating Marginals

The primary source of error in DMP equations is related to loops: Their presence
may result in overestimating parameters to account for DMP neglecting informa-
tion on some spreading paths. To study this effect in more details, we focused
on the most challenging case of a square lattice with many short loops, in an
adversarial case of very long cascades with T = 20. This represents a challeng-
ing setting in terms of prediction of marginals using the DMP-based algorithm,
which results in a finite error for parameter estimation even for a large number
of cascades. The next figure shows relative distance between true and estimated
marginals, and demonstrates that DMP equations run with reconstructed param-
eters produce a better approximation of real marginal probabilities, compared to
DMP predictions using the ground-truth parameters α∗ij.
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Fig. 3: Relative marginals differences for square lattice. Red line represent marginals for real transmission rates.

Further, we capitalize on the concept of effective models for inference and develop
a novel procedure for learning a mixture of spreading models on several replicas
of the graph. The new objective in this case is as follows:

Omixture =
∑
s∈S

∑
i∈O

∑
τ si

mτ si log

(
1

|R|
∑
r∈R

µsi,r(τ
s
i )

)
, (6)

where R is the set of replicas. Described approach further improves prediction
quality of marginal probabilities, as shown in the next plot.
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Fig. 4: Relative marginals differences for square lattice as a function of number of replicas used.

As a result, by sacrificing the correctness of parameters, one can achieve better
predictions, even in a loopy regime. Importnatly, this result holds also for the
partial observation scenario.
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