Generic Features in the Spectral Decomposition of Correlation Matrices

Yuriy Stepanov ${ }^{2, c}$, Hendrik Herrmann ${ }^{1, b)}$ and Thomas Guhr ${ }^{2, a)}$

${ }^{1}$ Department of Mathematics, Wuppertal University, Wuppertal, Germany and ${ }^{2}$ Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany

Abstract

We show [1] that correlation matrices with particular average and variance of the correlation coefficients have a notably restricted spectral structure. Applying geometric methods, we derive lower bounds for the largest eigenvalue and the alignment of the corresponding eigenvector. We explain how and to which extent, a distinctly large eigenvalue and an approximately diagonal eigenvector generically occur for specific correlation matrices independently of the correlation matrix dimension.

Why correlation matrices?

Correlation matrices are widely used across scientists and practitioners, especially in finance. An $n \times n$ Correlation matrices are widely used across scientists and practitioners, especially in finance. An $n \times n$
correlation matrix $C=M^{T} M$ is a product of an $N \times n$ matrix $M:=\left[r_{1}, \ldots, r_{n}\right]$ and its transpose M^{T}. The columns of M are normalised $r_{i}^{T} r_{i} \equiv 1$. Hence, a real $n \times n$ correlation matrix $C=\left(C_{i j}\right)$: is symmetric, it has ones on the the diagonal, and it is positive semi-definite. Usually the matrix M contains n time series of length N as columns. Here we consider C as a fixed realisation of a random variable and we do not refer to any matrix M.

Spectral Decomposition vs. Characteristic of Correlation Matrices

Characteristic: For every correlation matrix C we consider

the mean $\quad c:=\frac{2}{n(n-1)} \sum_{i>j} C_{i j} \quad$ and the standard deviation $\quad \sigma:=\sqrt{\frac{2}{n(n-1)} \sum_{i>j} C_{i j}^{2}-c^{2}}$,
of the coefficients $C_{i j}$. We denote the mapping $C \mapsto(c, \sigma)$ as the characteristic of C. The characteristic is always a point in the upper half of the unit disk in the (c, σ)-plane. Furthermore, we found that for avery $n \times n$ correlation matrix C one always has $c \geq 1 /(1-n)$

Spectral Decomposition: Every $n \times n$ correlation matrix C has a spectral decomposition

$$
C=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}
$$

with the real eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ and an orthonormal basis $v_{1}, . ., v_{n} \in \mathbb{R}^{n}$ of the corresponding eigenvectors. We introduce the normalised diagonal vector $\delta_{n}:=(1, \ldots, 1) / \sqrt{n} \in \mathbb{R}^{n}$, and the weights

$$
w_{j}:=\left\langle v_{j}, \delta_{n}\right\rangle^{2}
$$

The weights measure the angle between the diagonal vector δ_{n} and the eigenvectors. We note that the largest weight

$$
w_{\text {max }}:=\max _{n \geq j \geq 1}\left(w_{j}\right),
$$

corresponds to the most diagonal eigenvector. For the weights and the eigenvalues ones has

$$
\sum_{j=1}^{n} \lambda_{j} / n=\sum_{j=1}^{n} w_{j}=1 \quad \text { and } \quad 0 \leq w_{j}, \lambda_{j} / n \leq 1 .
$$

Therefore the quantities $\lambda_{1} / n, w_{1}, w_{\max } \in[0,1]$ can be compared for C of any dimension n.

References

[1] Y. Stepanov, H. Herrmann, and T. Guur, arXiv:2104.08966 [math-ph] (2021). (Submitted to Journal of Mathematical Physics)
[2] Y. Malevergne and D. Sornette Physica A 331,660668 (2004)
 [3] Z. Fueredi and J. Komlos, Combinatorica 1,233241 (1981).
$[4]$ E. P. Meyer, Educational and Psychological Measurement 35,6772 (1975).

Main Results: Relation Between (c, σ) and $\lambda_{1}, w_{1}, w_{\max }$.
Universal Bounds: Consider the function s defined by $s(x):=\frac{1}{2}(1+\sqrt{2 x-1})$ if $x \geq 1 / 2$, and $s(x):=x$ if $0 \leq x<1 / 2$. For every $n \times n$ correlation matrix $C \neq \mathrm{Id}$ we arrive at the following estimates

We extend the results of Refs. $[2,3,4]$ for correlation matrices. We find that a correlation matrix C has a distinctly large eigenvalue not only for $c \approx 1$ (as was shown by Meyer [4]), but more general for $c^{2}+\sigma^{2} \approx 1$. Furthermore, we find that an eigenvector of the largest eigenvalue is approximately diagonal not only when σ is small (as shown in Refs. [2,3]), but also when $c^{2} /\left(c^{2}+\sigma^{2}\right)>4 / 5$. But for which correlation matrices holds $w_{1}=w_{\max }$, i.e. when does the first eigenvector has the smallest angle with the diagonal?

Universal Domains: Empirical financial correlation matrices have $w_{1}=w_{\text {max }}$ [2]. We show that if the characteristic (c, σ) of an $n \times n$ correlation matrix C satisfies at least one of the conditions (i) $c \geq 1 / 2$, (red)
(ii) $c \geq \sigma+1 / \sqrt{n}$, (green or dashed) (iii) $c \geq \sqrt[4]{2} \sigma, \quad$ (red)
then one has $w_{1}>\frac{1}{2}$ and hence $w_{1}=$ $w_{\text {max }}$. For any (c, σ) in the blue domain, and any sufficiently large n, we find correlation matrices with $w_{1}<w_{\text {max }}$.

Polar coordinates Let $\Theta \in[0, \pi]$ be the angle between δ_{n} and an eigenvector v_{1} for the largest eigenvalue λ_{1}. We rewrite the characteristic $(c, \sigma)=$ $\left(r_{C} \cos \left(\phi_{C}\right), r_{C} \sin \left(\phi_{C}\right)\right)$ in polar coordinates. It follows that for every $n \times n$ correlation matrix C with $w_{1}=w_{\text {max }}$ one has
$\lambda_{1} / n \geq s\left(r_{C}^{2}\right)$ and $\Theta \leq \phi_{C}$.
Surprisingly, ϕ_{C} in the (c, σ)-plane bounds Θ in \mathbb{R}^{n}.

Universal lower bound for λ_{1} / n

Methodology

Characteristic Lemma: We define the scaling function $g_{n}(x):=((n-1) x+1) / n$. We find that for an $n \times n(n \geq 2)$ correlation matrix C, with the mean correlation c and the standard deviation σ, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and an corresponding eigenbasis v_{1}, \ldots, v_{n}, one has

$$
\langle\tilde{\lambda}, w\rangle=g_{n}(c) \quad \text { and } \quad\|\tilde{\lambda}\|^{2}=g_{n}\left(c^{2}+\sigma^{2}\right) .
$$

Here $\tilde{\lambda}:=\left(\lambda_{1}, \ldots, \lambda_{n}\right) / n$ denotes the normalised eigenvalues vector and $w:=\left(w_{1}, \ldots, w_{n}\right)$ denotes the weights vector, respectively.
Convexity: The space of $n \times n$ correlation matrices is convex. In particular, given a correlation matrix with characteristic (c, σ) we have that $C_{\mu}:=\mu C+(1-\mu)$ Id Convexity: The space of $n \times n$ correlation matrices is convex. In particular, given a correlation matrix with characteristic (c, σ) we have that $C_{\mu}:=\mu C+(1-\mu) 1 \mathrm{C}$
is a correlation matrix with characteristic $\left(c_{\mu}, \sigma_{\mu}\right)=\mu(c, \sigma)$ for any $0 \leq \mu \leq 1$.
Tensor Product: The tensor product of two correlation matrices is again a correlation matrix. The quantities $g_{n}(c)$ and $g_{n}\left(c^{2}+\sigma^{2}\right)$ behave multiplicative under tensor products.

Contact Information

