MUonE experiment at SPS

Marcin Kucharczyk

IFJ PAN

Białasówka 12.03.2021

Outline

- Muon *g*-2
- a_{μ} in Standard Model
- How to measure a_{μ}
- Over 40 years of muon *g*-2 measurements
- Future experiments precision and theoretical errors
- How to measure hadronic contribution to a_{μ}
- MUonE experiment at SPS
- Kraków group contribution

Magnetic moment of the muon

2

Interaction of particle with static magnetic field

$$V(\vec{x}) = -\vec{\mu} \cdot \vec{B}_{\text{ext}}$$

The magnetic moment $\vec{\mu}$ is proportional to its spin $(c = \hbar = 1)$

$$\vec{\mu} = g\left(\frac{e}{2m}\right) \vec{S}$$

The Landé g-factor is predicted from the Dirac equation to be

$$g = 2$$

g - gyromagnetic ratio

for elementary (pointlike) fermions

In reality: $g > 2 \rightarrow$ anomalous magnetic moment

$$a_{\mu} = \frac{g-2}{2}$$

Muon *g-2*

Additional effects from QED, electroweak theory and hadronic factors move SM prediction of q away from 2 \rightarrow we measure difference q-2

$$a_{\mu}=a_{\mu}^{QED}+a_{\mu}^{EW}+a_{\mu}^{QCD}+a_{\mu}^{NP}$$

If a discrepancy with SM value is found, beyond SM contributions to g-2 could come from SUSY, dark photons, extra dimensions or other new physics (NP)

· QED:

- known to 5-loop
- 99.99% of $a_{\mu}^{\rm SM}$ ~0.001% of $\delta a_{\mu}^{\rm SM}$

• EW:

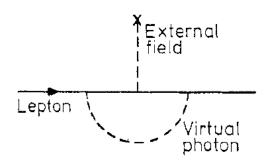
- known to 2-loop
- ullet 0.0001% of $a_{\mu}^{
 m SM}$ ullet 0.2% of $\delta a_{\mu}^{
 m SM}$

Hadron:

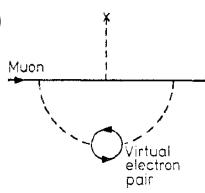
- 0.006% of $a_{\mu}^{\rm SM}$ ~99.8% of $\delta a_{\mu}^{\rm SM}$

- able to reduce QED and EW uncertainties to O(10⁻¹¹)
- QCD contribution: pQCD cannot be employed

a_u in Standard Model - **QED**



[Ann. Rev. 62, 237-264 (2012)]


QED treats $a_{\mu} \neq 0$ by correcting it for self-interaction processes

- quantum fluctuations associated with emission and absorption of virtual photons
- polarization of the vacuum by these photons into virtual particle-antiparticle pairs

lowest-order

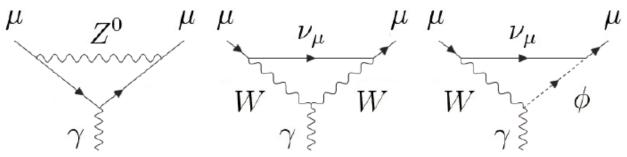
second lowest-order

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + 0.765\,857\,425(17)\left(\frac{\alpha}{\pi}\right)^2 + 24.050\,509\,96(32)\left(\frac{\alpha}{\pi}\right)^3 + 130.879\,6(6\,3)\left(\frac{\alpha}{\pi}\right)^4 + 753.3(1.0)\left(\frac{\alpha}{\pi}\right)^5 + \cdots$$

$$a_{\mu}^{\text{QED}} = 116\,584\,718.95(0.08) \times 10^{-11}$$

ullet recent calculations to 5th order in lpha reduce QED uncertainty to $\sim 10^{-13}$

a,, in Standard Model - **EW**



[Ann. Rev. 62, 237-264 (2012)]

EW term of a_{μ} groups all the loop contributions that involve W, Z, Higgs bosons and neutrinos

 \bullet such processes are suppressed by at least $(\alpha_0\,m_\mu/\,\pi\,M_W)^2\sim4\times10^{-9}$ wrt QED

EW lowest-order self-interaction processes

$$a_{\mu}^{\text{EW}}[1\text{-loop}] = 194.8 \times 10^{-11}$$

 $a_{\mu}^{\text{EW}}[2\text{-loop}] = -41.2(1.0) \times 10^{-11}$

$$a_{\mu}^{\rm EW}=153.6(1.0)\times 10^{-11}$$

Hadronic loops

• measurement of Higgs mass reduces electroweak error from 2×10⁻¹¹ to 1×10⁻¹¹

a_{μ} in Standard Model - **QCD**

Most of the $a_{\mu}(SM)$ uncertainty comes from self-interaction processes with hadronic loops

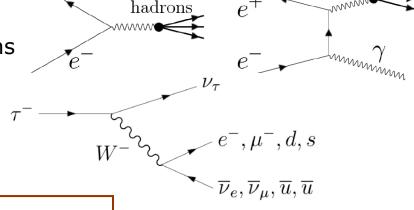
- contributions of these effects cannot be computed from first principles
- predominant correction comes from the hadronic leading-order contribution
 - → lowest-order hadronic loop vacuum polarization process
 - → it involves long-distance interactions for which pQCD cannot be employed

LBL model-dependent calculations, improvement expected from lattice calculations **HVP** based on the hadronic cross-section e^+e^- data, efforts to get with lattice

LO hadronic contribution

hadrons

[Ann. Rev. 62, 237-264 (2012)]


Hadronic vacuum polarization contribution determined from $e^+e^- \rightarrow hadrons$ measurements at BESIII, CMD3, BaBar, KLOE, VEPP-2000

• dispersion relation + experimental cross-section e^+e^- (and τ) \rightarrow hadrons

$$a_{\mu}^{\text{HLO}} = \frac{\alpha_0^2}{3\pi^2} \int_{4m_{-}^2c^4}^{\infty} ds K(s) \sigma^{(0)}(s)$$

 $\sigma^{(0)} \rightarrow \text{total x-section } e^+e^- \rightarrow hadrons$ kernel function $K(s) \sim 1/s$

- ullet σ from experiments & subtracted from ISR and vacuum polarization corrections
- improved by integrating e⁺e⁻ data with spectra of hadronic τ decays (isospin-breaking corrections)

$$a_{\mu}^{\rm had,LO} = \begin{cases} 6963(62)(36) \times 10^{-11} & e^{+}e^{-} \\ 7110(50)(8)(28) \times 10^{-11} & \tau \end{cases} \qquad a_{\mu}^{\rm h,HO} = -100(6) \times 10^{-11}$$

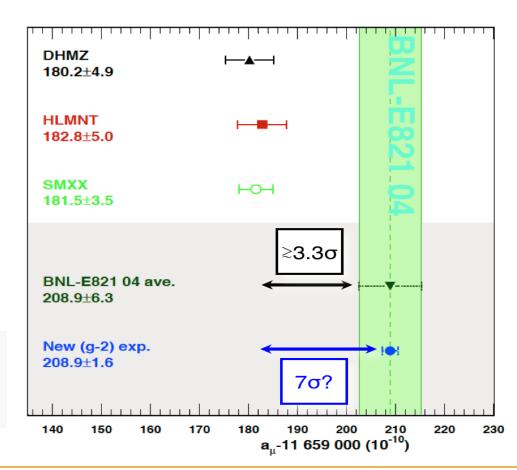
$$a_{\mu}^{\text{h,HO}} = -100(6) \times 10^{-11}$$

 $a_{\mu}^{\text{LbL}} = 86(35) \times 10^{-11}$

• lattice also tried (not so precise)

All approaches to determine LO hadronic correction heavily model-dependent

Discrepancy wrt SM


8

Adding predictions and combining errors in quadrature → overall SM prediction

$$a_{\mu}^{\text{SM}} = 116591803(49) \times 10^{-11}$$
 $a_{\mu}^{\text{exp}} = 116592091(54)(33) \times 10^{-11}$
$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 288(80) \times 10^{-11}$$

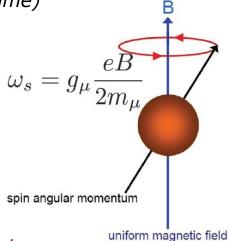
- this gives 3.7σ discrepancy
 between SM and measurements
- many contributions to SM prediction model- and datasetdependent
 - → most of independent calculations leads to discrepancies at 3-4σ level

New experiments will lower exp. error from 0.5 ppm to ~0.14 ppm in few years

How to measure a_{μ} ?

Parity violation in $\pi \to \mu \to e$ decay chain $\to way$ to measure muon mag. moment

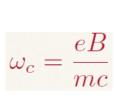
- muon from spin-0 positive (negative) pion decay at rest
 - → pion with zero final orbital angular momentum (short range of the weak force)
 - → as neutrino (antineutrino) is left (right) handed (helicity -1 (+1))

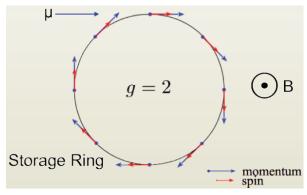


 $\pi^+ \to \mu^+ \nu_\mu$

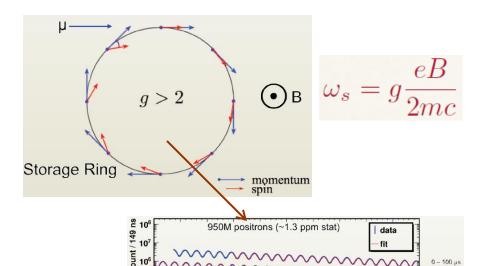
- \rightarrow muon 100% polarized to conserve angular momentum (helicity -1 (+1) born longitudinally polarized in the pion rest frame)
- beam of pions
 - ightarrow very forward / very backward muons are highly polarized

Polarized muon spin at rest in a magnetic field will precess


- \bullet if $a_{\mu} \neq 0$ there is a precession between momentum and spin vectors
- weak interaction provides information where muon spin was initially
 - → in the decay, highest energy electrons are correlated with muon spin
 - \to in parity violating decay $\mu^- \to \nu_\mu e^- \overline{\nu}_e$ positron is preferentially emitted in the muon spin direction



Experimentally: how to measure?


- put (polarized) muons in a magnetic field and measure spin precession f.q.
- get muon spin direction from decayed electrons
- a_{μ} ~ difference between spin precession frequency and cyclotron frequency
 - \rightarrow if g_{μ} = 2: spin always aligns with momentum
 - \rightarrow if $g_{\mu} \neq 2$: spin beats against momentum, oscillating radially

$$\omega_a = \omega_s - \omega_c \qquad \omega_a = a_\mu \frac{eB}{mc}$$

Measurements of ω_a and B field provide a_μ

Fermilab Muon g-2 Collaboration Production Run 1, 22-25 Apr 2018

Time % 100 us

Real world considerations

With the presence of both electric and magnetic fields

$$\omega_a = -\frac{Qe}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Anomalous magnetic moment independent of the electric field

- larger γ , longer muon lifetime, more g-2 circles observed \rightarrow OK

Problem: particles are not stored in the uniform magnetic field

Solution: introduce gradient with electric field to build a trap

But not all muons are at magic momentum ($\Delta p = 0.5\%$), i.e. the term is not completely vanished

vertical motion of the beam can be corrected for by measuring beam profile
 → using scintillating fiber tracker and straw tube trackers

A precise map of the field is needed in order to achieve highly precise results \rightarrow field measurements are often based on proton NMR

Real world considerations

With the presence of both electric and magnetic fields

$$\omega_a = -\frac{Qe}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Penning Trap
$$\gamma = \sqrt{1+1/a}$$

$$p = m\sqrt{\gamma^2 - 1}$$

Anomalous magnetic moment independent of the electric field

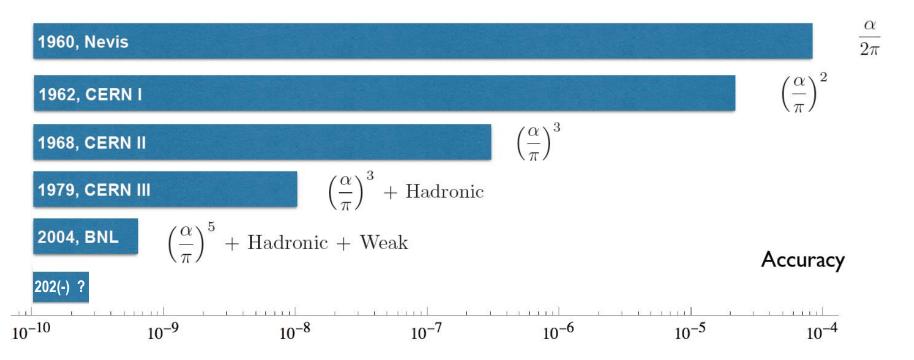
- larger γ , longer muon lifetime, more g-2 circles observed \rightarrow OK

Problem: particles are not stored in the uniform magnetic field

Solution: introduce gradient with electric field to build a trap

 $\gamma_{\rm magic} = 29.3$

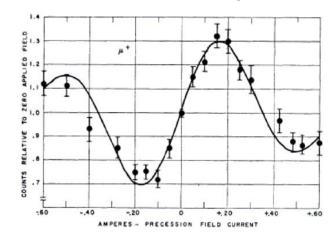
 $p_{\text{magic}} = 3.09 \text{ GeV/c}$


But not all muons are at magic momentum ($\Delta p = 0.5\%$), i.e. the term is not completely vanished

- vertical motion of the beam can be corrected for by measuring beam profile
 - → using scintillating fiber tracker and straw tube trackers

A precise map of the field is needed in order to achieve highly precise results \rightarrow field measurements are often based on proton NMR

Over 40 years of muon g-2



First muon spin rotation experiment at Nevis cyclotron

- mixed beam of π^+ and μ^+ of ~100 MeV
- muons stopped in a carbon target, placed in magnetic field
- scintillator telescope measured $\mu^+ \to e^+ \nu_\mu \bar{\nu}_e$ decay
- mag. field varied, higher causing more spin precession before decay

muon g-2 measured with \sim 10% precision, a_u with \sim 35%

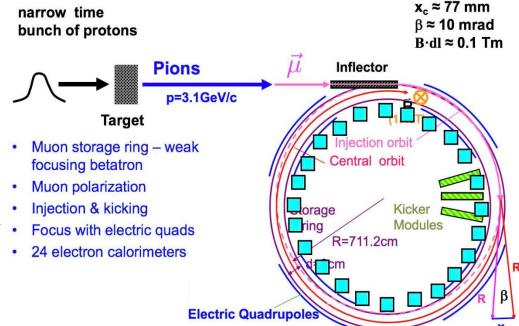
number of counts wrt magnetic field

Over 40 years of muon g-2

- CERN I (1958-1962)
 - \rightarrow ~150 MeV positive muons from the pion in-flight decays in synchro-cyclotron
 - \rightarrow first measurements, (g-2) to 0.4%
- CERN II (1962-1968)
 - → first muon storage ring (MSR), magnetic focusing
 - \rightarrow (g-2) to 270 ppm
- CERN III (1969-1976)
 - \rightarrow second MSR, electric field focusing, γ_m = 29.3, p_μ = 3.09 GeV
 - \rightarrow vertical electric focusing did not affect measured a_{μ} because of magic γ (Penning Trap)
 - \rightarrow (g-2) to 7 ppm
- BNL E821 (1990-2003)
 - → superferric magnet, high intensity beam, muon injection
 - \rightarrow (g-2) to 0.5 ppm
- FNAL, J-PARC (202(-))
 - → improvements in all aspects
 - \rightarrow (g-2) to 0.14 ppm

CERN synchro-cyclotron

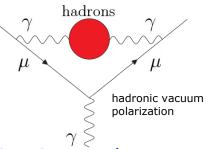
CERN second MSR


E821 MSR

Future experiments: E989 at Fermilab

- plan to collect 21 × BNL statistics
 - reduce stat. error by a factor of 4
 - more rapid rate of filling (12 Hz)
 - increased nr of muons per fill $(5-10) \times 10^4 / \text{fill}$
- re-usage of E821 storage ring
 - pure muon beam with no hadronic component
 - reduce beam power, p_{μ} closer to p_{magic}
 - increase injection efficiency
- error on ω_a reduced from 0.18 ppm in E821 to 0.07 ppm in E989
 - improved laser calibration
 - segmented calorimeter
 - better collimator in the ring
 - improved tracker
- error on ω_p reduced to 0.07 ppm
- uniformity and monitoring of mag. field
- fixed NMR probes measure time variations of the field during data taking
- better temperature stability of magnet

Data taking started in 2019


Goal: improvement in precision to 0.14 ppm

Hadronic terms: novel experimental approach

If results from new generation g-2 experiments at Fermilab and J-PARC reach their asymptotic precision (to ~ 0.10 -0.14 ppm)

 \rightarrow hadronic contributions to $a_{\mu}(SM)$ will be a main limitation on muon anomaly!

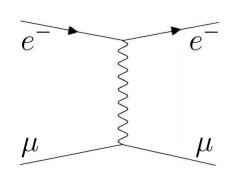
Now: hadronic leading-order contribution evaluated via dispersion integral

• relies on experimental e^+e^- hadronic cross sections

(accuracy ~0.6%)

- at low energy experimental results heavily fluctuate
 - → hadronic resonances and particle production threshold effects

A novel method exploits space-like processes

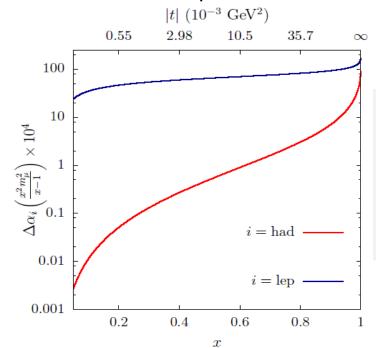

• determination of a_{μ}^{HLO} from scattering μ -e data

$$a_{\mu}^{\rm HLO} = \frac{\alpha_0}{\pi} \int_0^1 dx (1-x) \Delta \alpha_{\rm had}[t(x)] \tag{*}$$

 $t(x) = q^2(x) = x^2 m_\mu^2 c^4/(x-1)$ is the squared 4-momentum transfer

 $\Delta \alpha_{\rm had}(t)$ is the hadronic contribution to the running of $\alpha(t)$

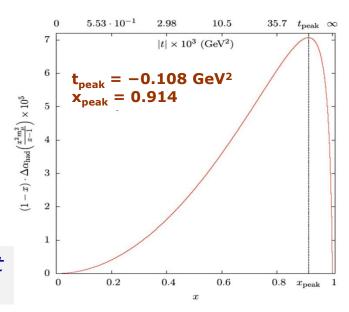
 $\alpha_0 = e^2/\hbar c$ is the fine structure (or Sommerfeld's) constant



lowest-order contribution to μ -e elastic scattering

Hadronic terms: novel experimental approach

Hadronic and leptonic contribution to running fine-structure constant



$$\alpha(t) = \frac{\alpha_0}{1 - (\Delta \alpha_{\text{lep}}(t) + \Delta \alpha_{\text{had}}(t))}$$

- hadronic contribution $\Delta \alpha_{had}(t)$ extracted from $\alpha(t)$
 - in the space-like region $(x \in (0-1))$ and t(x) < 0
- leptonic contribution well known from perturbative calculations
- a_u^{HLO} evaluated via sum rule in eq. on slide 15

- integrand of a_{μ}^{HLO} smooth and free of resonances
- experimental data on *t*-channel processes needed:
 - → space-like contribution to Bhabha scattering
 - \rightarrow fully space-like μ -e elastic scattering

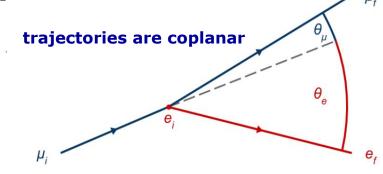
Measure differential cross-section as a function of t on a range which spans the t_{peak} value

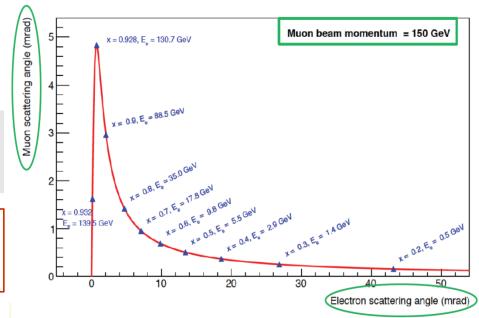
a,,HLO via muon-electron scattering

Elastic scattering of high-energy muons on the atomic electrons in a low-Z target

• running of fine-structure constant can be extracted from differential x-section for μ -e

elastic scattering


$$\frac{d\sigma}{dt} \approx \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2 \approx \frac{d\sigma_0}{dt} \left| \frac{1}{1 - \Delta\alpha(t)} \right|^2$$
 trajectories are coplanar



- including virtual and soft photons
- well known in SM
- $\bullet \alpha(t)/\alpha(0)$
 - include vacuum polarization effect
 - higher-order radiative corrections must be included for higher precision

For incoming muon energy E_i^{μ} in a fixed target experiment t variable is related to energy of scattered electron E_e^f or θ_e^f

$$E_e^f = m_e \frac{1 + r^2 c_e^2}{1 - r^2 c_e^2}$$
 $\theta_e^f = \arccos\left(\frac{1}{r} \sqrt{\frac{E_e^f - m_e}{E_e^f + m_e}}\right)$

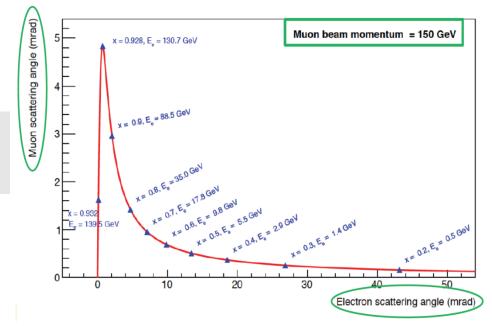
a,,HLO via muon-electron scattering

Elastic scattering of high-energy muons on the atomic electrons in a low-Z target

• running of fine-structure constant can be extracted from differential x-section for μ -e

elastic scattering

 $\frac{d\sigma}{dt} \approx \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2 \approx \frac{d\sigma_0}{dt} \left| \frac{1}{1 - \Delta\alpha(t)} \right|^2$ trajectories are coplanar



- including virtual and soft photons
- well known in SM
- $\bullet \alpha(t)/\alpha(0)$
 - include vacuum polarization effect
 - higher-order radiative corrections must be included for higher precision

For incoming muon energy E_i^{μ} in a fixed target experiment t variable is related to energy of scattered electron E_e^f or θ_e^f

$$r \equiv rac{\sqrt{(E_{\mu}^i)^2 - m_{\mu}^2}}{E_{\mu}^i + m_e}, \quad c_e \equiv \cos \theta_e^f$$

MUonE experiment at SPS

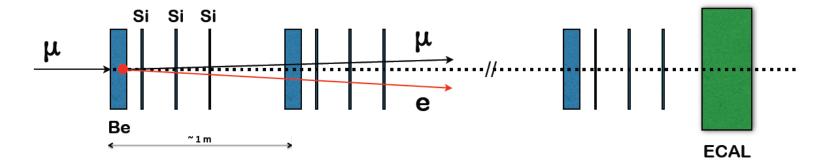
CERN-SPSC-2019-026 / SPSC-I-252 (2019)

Statistics:

- CERN's 160 GeV muon beam M2 (1.3 \times 10⁷ μ /s)
- incident on Be layers (total thickness 60cm)
 - → target made of a low-Z material to minimize MCS, pair production and Bremsstrahlung
- 2 years of data taking $(2 \times 10^7 \text{ s/yr}) \rightarrow \text{integrated luminosity } L_{int} \sim 1.5 \times 10^7 \text{ nb}^{-1}$

Highly boosted final state:

 $0 < -t < 0.161 \text{ GeV}^2$ 0 < x < 0.93


region extends to x=0.932, i.e. beyond the peak!

For a 160 GeV muon beam scan

Goal: $\Delta \alpha_{had}$ down to 0.1%

Systematics: systematic effects must be known at: ≤ **10ppm**

Theory: to extract $\Delta \alpha_{had}(t)$ from this measurement, ratio of SM cross sections in the signal and normalisation regions must be known at \leq **10ppm**

MUonE experiment at SPS

CERN-SPSC-2019-026 / SPSC-I-252 (2019)

The detector setup (under study and optimization)

- modular structure made by *up to 40* layers of *Be (or C) 1.5 cm* thick
 - \rightarrow interleaved with 6 layers of *Si* tracking planes (410 μ m thick, pitch 240 μ m, active area 9.5 \times 9.5 cm²)
 - → CMS upgrade *Si* trackers
 - → hit resolution ~10 µm
 - \rightarrow expected angular resolution \sim 10 μ m / 0.5 m = 0.02 mrad
- need to measure very precisely the angles of outcoming electron and muon
 - \rightarrow to exploit kinematical correlation of the μ -e collision
- need to measure direction (and energy) of the incoming muon
 - \rightarrow a la COMPASS
- PID crucial for low angle particles
 - \rightarrow EM calorimeter (lead tungstate (PbWO₄) crystals, 14 × 14 cm², 22 cm long, 25 X₀)

This is an experiment where the main issue is to control the systematic error at the same level as the statistical one

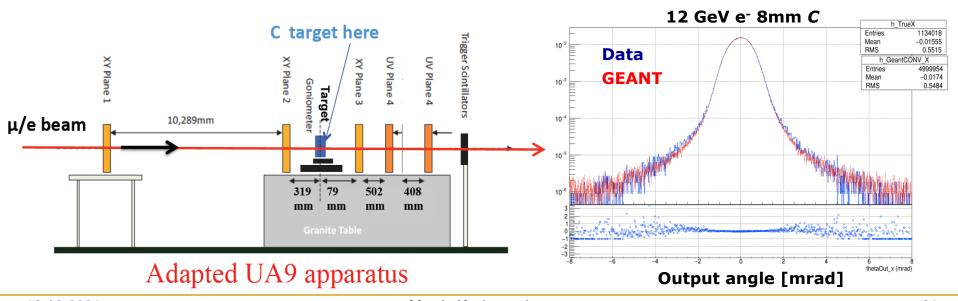
Muon beam M2 at CERN

MUonE will be located between Beam Momentum Station and COMPASS

Table 3 Parameters and performance of the $160\,\mathrm{GeV}/c$ muon beam.

Beam parameters	Measured
Beam momentum $(p_{\mu})/(p_{\pi})$	$(160{ m GeV}/c)/(172{ m GeV}/c)$
Proton flux on T6 per SPS cycle	$1.2\cdot 10^{13}$
Focussed muon flux per SPS cycle	$2\cdot 10^8$
Beam polarisation	$(-80 \pm 4)\%$
Spot size at COMPASS target $(\sigma_x \times \sigma_y)$	$8 \times 8 \mathrm{mm}^2$
Divergence at COMPASS target $(\sigma_x \times \sigma_y)$	$0.4 \times 0.8\mathrm{mrad}$
Muon halo within 15 cm from beam axis	16%
Halo in experiment $(3.2 \times 2.5 \mathrm{m}^2)$ at $ x,y > 15 \mathrm{cm}$	7%

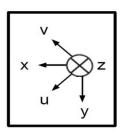
https://arxiv.org/pdf/hep-ex/0703049.pdf


Test beam 2017 (27 Sep - 3 Oct)

- used existing UA9 setup in H8-128
 - \rightarrow 5 Si strip planes: 2 before (upstream) and 3 after the target, 3.8×3.8 cm²
- data taken with electron and muon beams
 - \rightarrow beam energy: e- of 12/20 GeV; μ of 160 GeV
 - \rightarrow 10⁷ events with C targets of different thickness (2,4,8,20mm)

Goal: measure multiple scattering tails for $e \rightarrow e$ through material to compare with GEANT 4 model

- with muon data
 - \rightarrow identify μ and e from elastic scattering in the final state
 - → measure multiplicity of particles from the target to evaluate background


Test beam 2018 (Apr 1st to Nov 12th)

- the setup has been located downstream COMPASS
- aim of the measurement campaign
 - → muon-electron elastic scattering with high statistics
- using muons from pions decays (hadron beam)
 - \rightarrow estimated beam momentum $p_{beam} = (187\pm7)$ GeV
- to measure the correlation between the scattering angles
 - → muon angle vs the electron angle
- electron energy vs the electron angle correlation and PID
- detector → tracking system: 16 stations equipped with the AGILE silicon strip sensors
 400 micron thick, single sided, about 40 micron intrinsic hit resolution
 - → electromagnetic calorimeter: 3x3 cell matrix, BGO-PMT crystals, ~8×8 cm²

MUonE configuration @ 02/05

Test beam 2018

MUonE status and plans

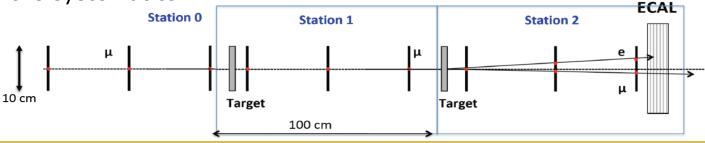
IFJ PAN group involved in all the stages listed below

Letter of Intent accepted by SPSC CERN in 2020 CERN-SPSC-2019-026 / SPSC-I-252 (2019)

- test beam performed in 2017 and 2018 (arXiv:2102.11111v1, submitted to JINST)
- 2019
 - → finalization the LoI, accepted by SPSC
 - → setting up the Collaboration
- 2020 → detector design and analysis strategy optimization
- 2021 → final feasibility studies with a detector prototype (Pilot Run)
- 2022–2024 → start data taking after LS2

Pilot Run in 2021

Requests 3 weeks of the M2 beam, at the end of the running period of 2021


- upstream COMPASS

Prototype of the final setup

- 2 stations, each consists of a thin Be target and 6 CMS tracking layers
- 6 other tracking layers upstream detector for tracking the incoming muons

Goal

- confirm the system engineering, i.e. assembly, mounting and cooling
- assess the detector counting rate capability
- check the signal integrity in the process of data transfer for DAQ
- prove the validity of the trigger-less operation mode
- evaluate the FPGA real-time processing
- test the procedure for the alignment of the sensors
- estimate the systematics

Collaboration

1st MUonE Collaboration Meeting 25-26 Mar 2019, CERN

→ first IB meeting

20 institutes from 9 countries, ~40 people

CERN

- University of Siegen DE
- Trinity College Dublin IR
- Bologna, Ferrara, Milano Bicocca, Padova, Parma, Pavia, Pisa, Trieste IT
- Institute of Nuclear Physics PAN PL
- Shangai University China
- Budker Institute of Nuclear Physics Novosibirsk RU
- JINR RU
- University of Liverpool UK
- Imperial College London UK
- University Illinois Urbana Champaign USA
- University of Virginia USA

Kraków MUonE Group

IFJ PAN MUonE Group

Marcin Kucharczyk (group leader) IFJ PAN

Mariusz Witek IFJ PAN

Mateusz Goncerz (PhD student) IFJ PAN Piotr Dorosz (electroics) WIEiT AGH

Miłosz Zdybał (PhD student) IFJ PAN Mateusz Baszczyk (electronics) WIEiT AGH

RESPONSIBILITIES

Detector simulation / software / data analysis

- full responsibility for detector simulation, event reconstruction and software environment (FairRoot) implementation and maintenance (for testbeam, pilot run and for final detector)
- involvement in physics analyses
- involved in LoI

Dominant role in the simulation, software alignment, event reconstruction and final data analysis of testbeam data 2018

(paper submitted to JINST, arXiv:2102.11111v1)

Hardware

- involvement in FPGA based trigger and DAQ
- cover the costs of the high and low voltage equipment for trackers in Pilot Run

Krakow group - chosen activities

- Implementation and maintenance of the software framework
 - FairRoot
- Test beam 2018
 - detector simulation, software alignment, event reconstruction, data analysis
- Detector simulation, event reconstruction and data analysis
 - Pilot Run
 - Final MUonE detector
- Deep learning techniques for the event reconstruction

Software environment - FairRoot

FairRoot framework based on ROOT (https://fairroot.gsi.de/)

MUonE experiment

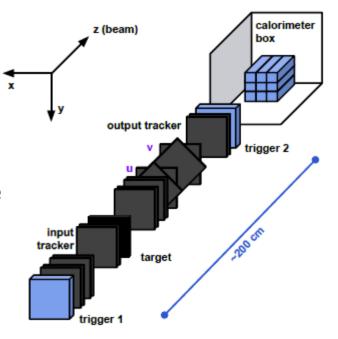
FairRoot framework for implementation of detector geometry, event generation, simulation, event model and data analysis

FairRoot framework

- object oriented simulation, reconstruction and data analysis framework for the FAIR experiments at GSI Darmstadt
- enables users to design and/or construct their detectors and/or analysis tasks in a simple way
- it is a useful framework with all components ready:
 - detector simulation → convenient interface to GEANT
 - event reconstruction
 - event displaying
 - generators easily interfaced
 - both fast and full simulation available, etc.
- ets & now TestBeam 2018 MUonF

Test beam 2018 MC event

successfully used by PANDA and SHIP projects & now TestBeam 2018 MUonE


FairMUonE package used for testbeam 2018, foreseen to be software environment for the final experiment Implementation and maintenance by Krakow group

Analysis of testbeam data 2018

At COMPASS site from April 1st to November 12th

- muons from pions decays
 - \rightarrow estimated $p_{beam} = (187\pm7) \text{ GeV}$
- detector
 - → tracking system: 16 stations equipped with the AGILE silicon strip sensors
 - 400μm thick, single sided, ~40μm resolution
 - → EMCal: 3x3 cell matrix, BGO-PMT, ~8x8 cm² resolution not enough to perform PID

Data sample:

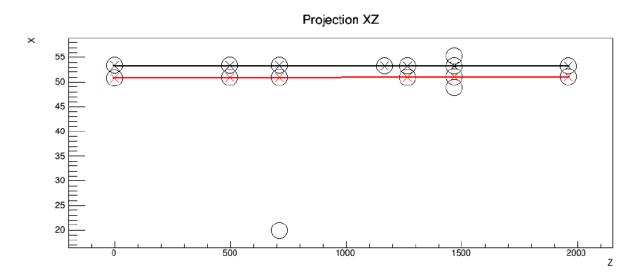
- collected during test beam run in 2018
- single target
- about 500'000'000 events
- total calo deposit above 1 GeV

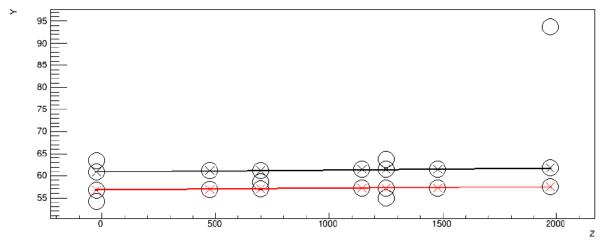
Signal MC (elastic scattering) sample:

- $E_{in} = 187 \text{ GeV}$
- electron momentum cut at 1 GeV
- total calo deposit above 1 GeV
- 500'000 events
- flat beam profile, ± 4.6 cm, $\theta = 0$

No background simulation - angular distr. of electron pair to be improved in Geant 10.7

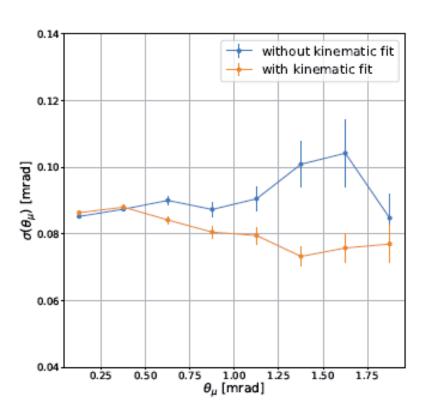
Dominant contribution from Krakow group


Tracking for testbeam 2018


- Topology of μ -e scattering
 - \rightarrow 3 tracks to be reconstructed: incoming μ before target + outgoing e and μ after target
 - \rightarrow boosted kinematics of the collision \rightarrow cover large part of acceptance
 - \rightarrow time structure of the beam \rightarrow keep the background at low level
- Pattern recognition (goal: maximize efficiency)
 - \rightarrow construct pairs from all combinations of hits in x, y and stereo layers separately
 - → two-dimensional lines in x-z or y-z projections for each pair of hits
 - \rightarrow use robust fit to the selected 2D lines in x-z or y-z projections reconstruct 2D tracks
- Track reconstruction resolution: 20-35 μm
 - → all combinations of 2D line segments combined into 3D track candidates
 - → iterative fitting procedure using a least square method
 - \rightarrow clone removal procedure based on number of hits & minimum χ^2/ndf
- Software alignment
 - → collect good quality tracks (at least 10 hits)
 - → minimize residuals of every station on-by-one + iterative procedure using MINUIT

Efficient reconstruction of close tracks

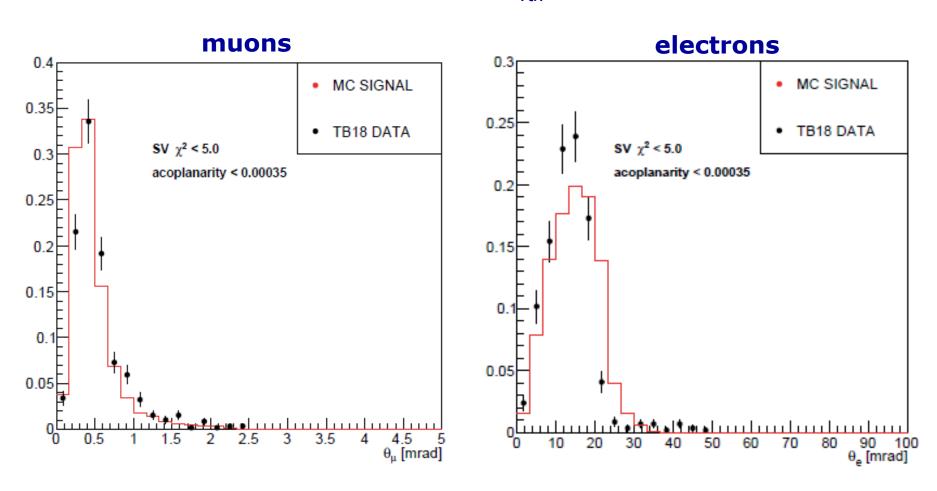
Reconstruct μ -e elastic scattering event


Kinematic fit for incoming muon track and two outgoing muon and electron tracks originating from the target position


- identify tracks based on their theta angle wrt incoming muon (no PID from EMCal)
 - → larger angle electron
 - → smaller angle muon
- ullet account for electron multiple scattering by introducing additional sigma term to its χ^2 using approximate momentum to calculate error
- minimize vertex χ^2 (sum of χ^2 's of tracks constrained to go through the vertex position) by varying its x and y position at target z
- recalculate track slopes and theta angles wrt incoming muon
- use the sum of χ^2 of tracks as event quality variable

Angular resolution

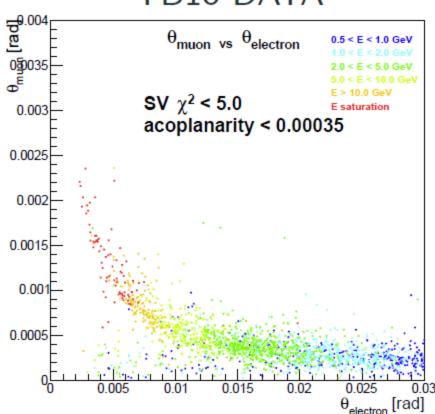
Angular resolution as a function of the scattering angle for muons and electrons with and without kinematic fit



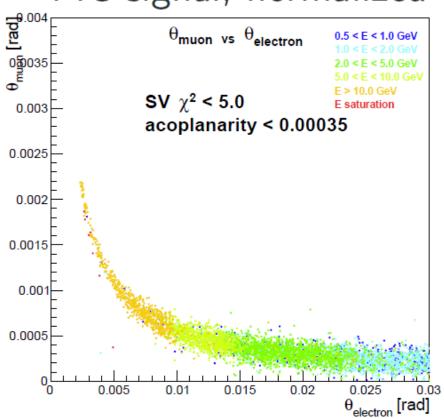
varies mainly due to multiple scattering

Scattering angles

Selection: |acoplanarity| < 0.00035, χ^2_{vtx} < 5.0


no background simulated

Correlations between scattering angles


Selection: |acoplanarity| < 0.00035, χ^2_{vtx} < 5.0

TB18 DATA

colors represent the energy deposited in the calorimeter

MC signal, normalized

no background simulated

Testbeam 2018 analysis - conclusions

- Aimed mainly to explore the ability to select a clean sample of elastic scattering events in view of designing the final experiment
 - → able to select clean sample even if the resolution worse than the one planned to be used in MUonE
 - → first results of this kind
- Importance of an adequate calorimeter
 - → understand the electrons emitted in the range of a few GeV
 - → determine the behaviour of the background
- Important upgrade of Geant4
 - → accurate angular distribution of the electrons of the pair has to be implemented
 - → Geant4 version 10.7 (under tests now, to be in FairRoot in March)

Results in: arXiv:2102.11111v1, submitted to JINST

Deep machine learning

Potential use of deep machine learning in MUonE

Deep Neural Networks (DNN)

- \rightarrow very fast
- \rightarrow parallel
- → in principle do pattern recognition 'at once' without looping over hits

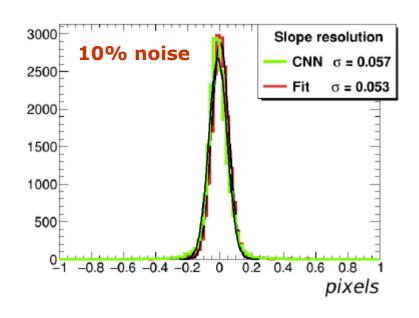
High occupancy expected in the final MUonE experiment

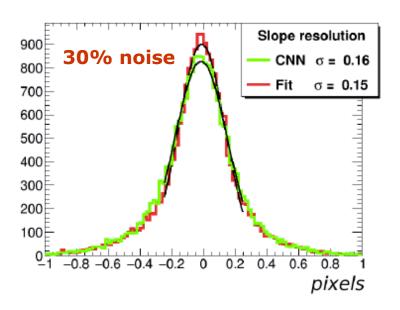
- → higher precision with DNN
- → higher efficiency with DNN

Consultations with HEPTrkx group working on tracking for HEP experiments

https://heptrkx.github.io/

Deep machine learing - first results


Initial studies in collaboration with Marcin Wolter


Toy model of track finding using Deep Neural Networks

- → 2-dimensional data to reduce the training time
- → straight line tracks (no magnetic field) on the 28×28 pixel plane
- → finite hit efficiency and random noise

3 tracks

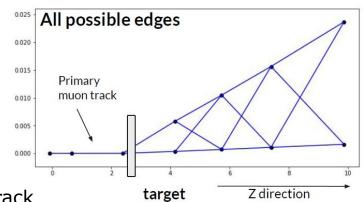
- 70% hit efficiency
- 10-30% random noise

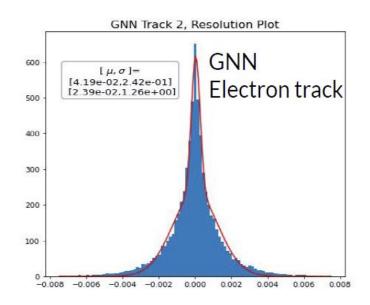
Results published in: Computer Science 20(4) (2019) 477-493

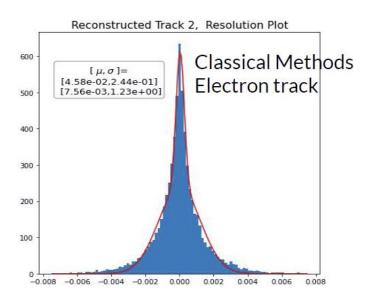
Deep machine learing - 2D tracks with GNN

Summer student's work supervised by Marcin Wolter

GNN - Graph Neural Network


MC tracks for MUonE TB2018 used


Input data - graph, instead of vectors or matrices


 \rightarrow in this case, hit positions - nodes

Output data - graph with edges, connecting hit points

→ each edge has a weight - probability to belong to track

Miłosz Zdybał is recently working on application of DNN for 3D tracking

Conclusions

Exciting times for the muon g-2

• precise determinations of a_{μ} at Fermilab and JPARC

HLO corrections are essential

space-like approach (MUonE) allows to reach the precision below 5 ppm

Successful test beams at CERN in 2017 and 2018 (we see elastic μ -e events!)

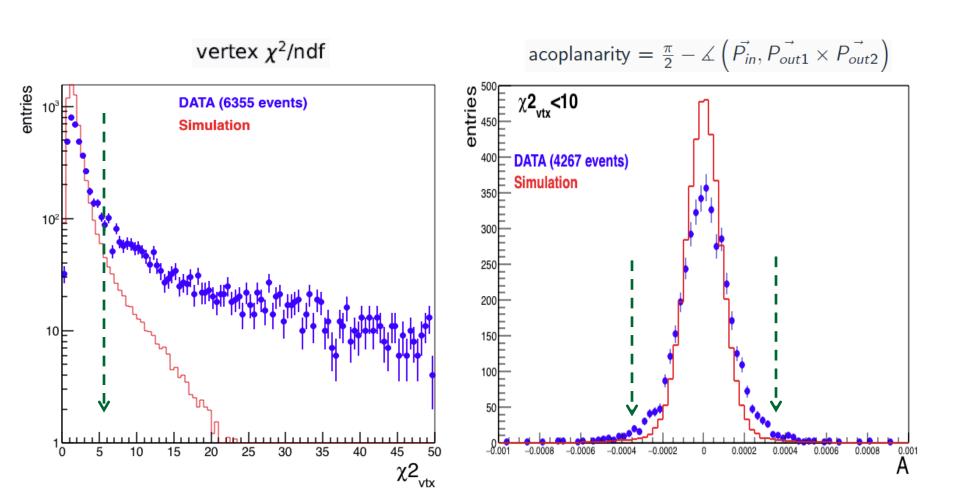
Letter of intent accepted by SPSC

Valuable solutions for the tracker exist (not require R&D for new technologies)

final detector prototype will be tested in Pilot Run in 2021

Theoretical calculations

MC at NLO available, and NNLO progressing successfully


Important involvement of IFJ PAN group

- implementation and maintenance of the software framework
- responsibility for detector simulation and event reconstruction
- optimization of detector layout (LOI)
- analysis of test beam data (paper sent to JINST)
- contribution to DAQ development
- participation in the costs of detector construction for Pilot Run

Backup

Variables used in selection

no background simulated