

THE END IS THE BEGINNING

• Very often we see only the final results of complicated physics analyses...

Flavour oscillations
in
$$B_s^0 - \overline{B}_s^0$$
 system

 But before we can do that we need to push the RAW data through very complex processing pipelines, including trigger and tracking

THE END IS THE BEGINNING

The typical data processing pipeline is as shown below:

- Detector collects data radiation interaction with matter loss of energy gives what we call ,,detector response"
- Readout electronics interprets the detector response and convert it into (usually) voltages and may convert it to a digital signal
- Then we combine the signals from different detectors, process with software to reconstruct particle trajectories (tracks) and vertices and...
- Perform the physics analysis

LHC TRIVIA...

- There is approximately 100 billion protons circulating as bunches in LHC during the regular data taking runs
- Every 25 ns the bunches cross and interaction can occur (40 million times per second!)
- Typically 1 per million is useful for physics, the rest is consider the background or not interesting
- We need to be very clever to filter them out!
- Typically an LHC experiment produces a data stream of order of tens of GB/s
- Stored data are counted in tens of PB per year these data are analysed by physicists

BE PRECISE...

- This is the LHCb detector
 It is over 20 m long and 3 stories high!!
 IT IS A BIG TOOL
- In a similar way as you may be interested in your PC screen resolution or your camera resolution

we also need precise

tools!

BE PRECISE...

□ This is the LHCb detector \Box It is over 20 m long and 3 stories high!! □ IT IS A BIG TOOL

□ In a similar way as you may be interested in your PC screen resolution or your camera resolution we also need precise tools!

VELO:

secondary vertices

σ_{IP} ~20μm

RICH (Ring Imaging **Calorimeters:** Cherenkov Detector) -Calorimeters -Energy measurement, e/γ particle ID from radiation measures energy. identification, π^0 mass induced by crossing particles. Some particles stop. resolution $\sim 10 \text{ MeV/c}^2$ **Muon System:** $\epsilon_{\mu-ID}$ >97% with <2.5% π mis-ID rate Distinguish primary and Muon chambers -Silicon tracker - $\sigma_{_{\tau\text{-decay}}}\,^{\sim}\!45$ fs for B mesons detect particles that tracks particles near Magnet - bends charged leave the detector Tracking Systems (TT, IT, OT) the collision region. tracks, allowing for (most likely muons). $\epsilon_{tracking} > 96\%$ momentum measurement. $\Delta_{\rm p}/{\rm p}^{\sim}0.5-1.0\%$

LHC Detectors - LHCb

RICH: Particle Identification ε_{k-ID}~95% Mis ID rate for π : ~10%

LOOKING FOR A NEEDLE IN A HAY STACK

- Data rate of entire detector too high for all to be used in trigger:
 - Use a subset of information.
 - Introduce multiple levels of triggers → use more information in higher levels.
- May deliberately reduce resolution of detectors to reduce data size.
 - E.g. combine cells in tracker, or use a less precise data type.
- LHCb model is very efficient, allowing for physics analysis immediately after trigger - not always possible.

Particles cross each other every 25ns.

First trigger selects 1 in 40 events. Performed in hardware, using subset of detector data.

Software trigger selects I in 100 events. Since called less frequently, can use full detector information for full event reconstruction.

Combined trigger selects 1 in 40k events for physics analysis.

LHCB TRIGGER COMPRESSION

Level	Level0*	High Level Trigger*
Input rate	40 MHz	IMHz, 70GB/s
Hardware	FPGAs.	Local cluster using 20k ^[7] CPUs.
Output rate	IMHz	10kHz, 700MB/s ^[2]
Event filter factor	40x	100x
Notes	Uses subset of detector data (ECal and muons only).	Full reconstruction performed.

WHAT YOU REALLY NEED TO DO

- When we say: "reconstruction" we mean actually a lot of things on top of each other:
 - Particles are created in collisions we need to know where they are produced, what types are produced and follow them to their parents
 - To make this happen we need: to reconstruct particles' hits locally in tracking detectors, put the hits together to form tracks, use tracks to reconstruct vertices and finally we need to identify the type of particles (PID)
- This complicated procedure is usually divided into steps:
 - Local hit reconstruction
 - Pattern recognition algorithms to assign hits to tracks
 - Fitting the trajectories to get the path of reconstructed particles inside detector
- No universal solution! Each experiment is unique and need a lot of studies. We need to tune the performance using:
 - Efficiency of tracking: how many tracks we can find compared to all re-constructible tracks
 - **Purity**: fraction of real tracks to all reconstructed
 - High quality MC samples are needed for this!!

- Looking side on:
 - Particle tracks clearly visible to eye.
 - Extra hits present, typically electrical noise or secondary short tracks.
- Recall data points in the format:
 (x, y, z, time)
 - Time resolution only accurate to which collision the particles come from (25ns, sometimes worse...).
- Have to find an algorithm to track using this information and in these conditions.
 Many choices - consider the following (LHC) examples...

LHCb VELO data event (2d projection)

Name	Description	Scalability
Combinatorial	 Form every track from each possible combination of hits. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !

Name	Description	Scalability
Combinatorial	 Form every track from each possible combination of hits. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !

Name	Description	Scalability
Combinatorial	 Form every track from each possible combination of hits. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !

Name	Description	Scalability
Combinatorial	 Form every track from each possible combination of hits. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !

Name	Description	Scalability
	 Form every track from each possible combination of hits. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !
Hough Transform	 Transform points into a system where clusters form. If straight tracks, take the difference between consecutive hits. Group (e.g. in a histogram) and tag peaks. 	x

Name	Description	Scalability
	 Form every track from each possible combination of hits. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !
Hough Transform	 Transform points into a system where clusters form. If straight tracks, take the difference between consecutive hits. Group (e.g. in a histogram) and tag peaks. 	x

Name	Description	Scalability
Combinatorial	 Form every track from each possible combination. Access each track by quality (e.g. χ²) and tag. 	n _{Tracks} !
Hough Transform	 Transform points into a system where clusters form. E.g. for straight tracks, take the difference between consecutive hits. Group (e.g. in a histogram) and tag peaks. 	х
Seeding	 Form seeds from pairs of hits on a sub set of the detector. Extrapolate the seed and count hits intercepted. Tag if sufficient number of hits. 	nlog(n)

- Once we picked up an algorithm we need to understand its performance
- It is a complicated thing!

TRACK FITTING

- Tracking particles through detectors involves two step.
 - Pattern recognition: identifying which detector hits for a track.
 - Track fit: approximate the path of the particle with an equation.
- Typically use a Kalman filter. Basic steps:
 - Track is approximated as a 'zig-zag' (fewer free parameters than co-ordinates!).
 - Start with seed or estimate of track parameters (e.g. straight line fit).
 - Propagate to the next plane (approximating B field, account for scattering in material).
 - Predict position of next particle, weighting by closest hits (needs too be tuned).

Kalman Filter Example

TRACK FITTING

- Common to tune pattern recognition to be efficient and impure → refine selection later using full particle information.
 - Can use χ^2 to find well fitting tracks.
 - Can also use/combine with other parameters:
 - Number of hits (complimentary information to χ^2).
 - Fits from different sub detectors
 - Typically build an MVA out of different quality parameters - LHCb uses a neutral net.

Caution: if fake/ghost tracks are formed from parts of real tracks, they may be lost.

CALIBRATION – SUPER CRUCIAL PART

- Stop for one more minutes... We need to make sure our tracks are the high quality
 - Time alignment
 - Spatial alignment
 - PID calibration
- Then we finally have physics quality tracks!

SPACE ALIGNMENT

 $\alpha \rightarrow$ alignment constants, $\mathbf{r} \rightarrow$ track residuals, $V \rightarrow$ covariance matrix

SPACE ALIGNMENT

• Impact on impact parameter... quality – critical for trigger selections

SPACE ALIGNMENT

• Mass resolution... $\Upsilon \rightarrow \mu^+ \mu^-$

First alignment σ_Υ = 92 MeV/c²

PID

- So, you say you reconstructed a track... what track...?
- PID dectectors pure physics of radiation interaction with matter!

Exclusive selections with complicated final states

Invariant mass distribution for $B^0 \to \pi\pi$ decay ($B^0 \to \pi\pi$, $B^0 \to K\pi$, $B^0 \to 3$ -bodies, $B_s \to KK$, $B_s \to K\pi$, $\Lambda_b \to pK$, $\Lambda_b \to p\pi$)

