Krakow Applied
Physicsand oy,
Computer Science
Summer School '21

July 1- 28 2021

Iy

AGH

Wvorum firva

LHCh
\ | \)

SaTLAS

Inte

Principal directions

Let’s have a look at the plot below:
Principal

&/ directions

<Y

Here, u and v are called the principal direction of data variation (u is the most important one, v is
next and perpendicular to u)

Anything interesting about the transformation (X,Y) = (U,V)?
After the transformation data set is compact (mean values are 0) and decorrelated

And reduction...?

Consider this: what if variation in data is caused by a specific relation? For instance:

YA L
u ,All data variation” in

<«— the principal direction u

1

e

*]

Noise related to e
measurement in v

I
X

Actually, we could say, that there is no variation along the second principal direction, i.e.,
there is no vital information for ML algo.

Can treat this as 1d data set without compromising the overall performance of classification

Get some feeling

The math behind PCA

Most of the times (or even all of the time) we are going to use libraries to do the job! That is
fine, however, learning a bit what is under the hood is a good thing!

First given the data we can compute the covariance matrix:

¥y = cov(Xy, X;) = E|(X; — ud(X; — uj)] = E|XiX;] — man

((Xl —pu)(Xy —) o (X —pu) Xy — .uk)>
Y = : - :

K — 1)Ky — 1) (i — 1) K — 1)

var(X,) o cov(Xy, X))
X = : :
cov(Xy,X;) - var(X,)

The math behind PCA

Having the covariance matrix one can find the principal components by computing its eigen-
vectors and eigen-values

In other words we would say that we want to find a transformation matrix to find the axis
system in which the covariance matrix is diagonal (or in canonical form)

The eigen-vector corresponding to the largest eigen-value is the direction of the greatest
variation

We start from the characteristic equation (or polynomial) |(Z — Al)| = 0, which for £ matrix

of size n X n has n roots
Next, we calculate eigen-vectors: 2x; = Ax;
The eigen-vectors should be normalised: x; - x; = x] - x; = 1

We can combine the eigen-vectors and write as a transformation matrix.

The math behind PCA

The transformation matrix

T=(*1 X Xx3),TTT =T'T=1

A, 0 0
(X1 Xz Xx3)=(x1 X2 x3)[0 4, O
0 0 A

YT =TA - TTET = A

So, having calculated e-vectors and e-values, we can use it to transform all data points into a
data set where the variables are not correlated: (X,Y) — (U,V)

In this new coordinate system the new correlation matrix is diagonal and can be written as A

It is definitely worth considering

If we have data as follow:

A P2 ?1

(]
Hobaue-n-- - .
GD 0 DG: . . .
- (mtlamiz) = (E11‘1%*)

> 1

We do the following:
Calculate the mean values: (14, U5), X and the transformation matrix T
Now, each data point can be transformed from (xy, x,) — (¢4, ¢,) with the equation: py = (P — ;)T

This kind of data pre-processing is very commonly used for many different types of ML analyses!

LHCb VELO Pixel analysis — activation

The surrogate function is what we use
to calibrate each pixel to be able to
translate ToT counts into collected
charge (deposited energy)

Surrogate function has the following
form:

f(x) = p0 + p1*x - c/(x-t)

LHCb VELO Pixel analysis — exploration

58 pre

- 0.9

pO

5.0 |
25
Jh

2.5 5.0 0.004 0.006 25060
pO pl

LHCb VELO Pixel analysis — PCA

2500

3000
A 4000 -
3000 2000 4 2500
] 2000 A 3000 ~
@ 2000 A 1500 4
= 1500
z 1000 A 2000
1000 - 1000
i 1000 -
500 500 4
o- 0- 0 -
0.005 0.006 2000 4000 6000 8000 10000 12000 —-1000 =500
E 0.4 A 0.4 4 0.4 -
=
2
o 0.3 0.3 1 0.3 4
-
1]
3 0.2 0.2 0.2 -
3
o
g 0.1+ 0.1 4 0.1+
2
@
= 0.0 - 0.0 - 0.0 -
-2 0 2 4 =2 0 2 4 6 -4 =2 0 2 4 -4 -2
o raw data e raw data e raw data 8000 4 "o raw data
- = generated [generated | 5000 A © generated © generated
U
s 4000 4 6000 -
z 3000 1 4000 -
c
; 2000 A
[2000 -
= 1000 -
r

0.005
pl

0.006

04
2000 4000 6000 8000 10000 12000

C

—1000

—500

LHCb VELO Pixel analysis — Model

Original pre and post (n=300) surrogates Generate pre and post (n=300) surrogates

pre
% post post

ML your way

The way you can start to build your own start-to-end projects can be
facilitated by tools such, conda, pycharm, git, etc.

A lot of steps (data pre-processing, feature extraction) can be approached in
quite abstract way, thus a set of simple tools can be prepared and shared
between different projects

Key aspect is: always understand your data!
Elements of statistical data analysis are the key here.

How to make sure we are doing a good job

2-point validation works like that (variation on this is k-folding):
Take the whole data set and divide it 0.5:0.25:0.25
Use the first subset to make training, use the second to validate and tune the hyper-parameters

Use the last part to evaluate the results

Data (/y

Initial training (explore data, g Final evaluation —is it
understand features,

transformations) Validate training tune
hyper-parameters

any good?

Hands-on approach

Below is not a ,magic recipe” it is more like a set of good rules (may not be
possible always to go , exactly like that”)

Collect data (aka experiment), can use structured and unstructured sets

Pre-processing — format data accordingly (algorithm dependent), missing
data and outliers are delicate to handle

Data exploration and feature engineering (this is the most time-consuming
part of the ML)

Fit the model using training and validation sets
Final tests on evaluation data set
Deploy! May open a can of worms...

Errors

Testing is a probabilistic process — the answer is never definite (depends on
experiment, significance, etc...)

When training an algorithm (ML) we need to prepare for the same — not
every answer will be perfect!

In principle errors are related to the fact that we always operate on finite
samples — not on populations (regression of information)

Type | error —reject Hy when it is true (false negative)
Type Il error — accept it when it is false (false positive)

Confusion Matrix (l)

This is an important tool to asses the quality of our trained model

True positive (TP) — predicted = actual
True negative (TN) — predicted = actual
False negative (FN) — predicted # actual
False positive (FP) — predicted # actual

Actual
Class

Predicted class

P N
True False
Positives Negatives
(TP) (FN)
False True
Positives Negatives
(FP) (TN)

Confusion Matrix (I1)

-~

Y =0

NEGATIVE

S

Y =1

POSITIVE

Y =0

NOT PREGNANT

Y =1

PREGNANT

Confusion Matrix

Base on the CM we can provide some measures to asses the quality (quantitative!)

Precision (P): or how are we sensitive to true positive hits (how often our signal is predicted

correctly)
p_ TP
TP+ FP

Recall (R): sensitivity (true positive rate), what fraction of true signal was predicted as signal
P TP
TP+ FN
F1 score: (harmonic mean of the precision and recall)
Specificity (S): what fraction of noise was predicted as noise

. TN
TN + FP

uning the decision threshold

Say, we trained a model (the plot below may represent a logistic regression
problem)

What decision threshold should we choose? Are there any other stipulations
than the loss?
1 'J- guEEEREDN
3

0.5 I-ll-ll-lll:l--l-lll-lll

*

0 ---l"
T e

ROC

Receiver operating characteristic curve

It expresses the dependence of TP events rate (sensitivity) versus FP events
rate (aka 1-Specificity)

Some extension of Receiver operating characteristic to multi-class

This basically shows how kind
of a trade-off we are willing
o 0.6
to accept — the measure of
goodness is area under ROC - g o4
Apoc (AUC) g e arabe ROC o (ren = 0.18)
: ~— ROC curve of class 0 (area = 0.91
= ROC curve of class 1 :area = 0.60§
— ROC curve of class 2 (area = 0.79)
%060 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Some extension of Receiver operating characteristic to multi-class

Green threshold is
better than red

micro-average ROC curve (area = 0.73)
= » macro-average ROC curve {(area = 0.78)
— ROC curve of class 0 (area = 0.91)
- ROC curve of class 1 (area = 0.60)
— ROC curve of class 2 (area = 0.79)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

The best model

R-squared

We collected a data sample
and want to understand its
variance

For the moment we just
consider the data set as 1-dim
one

n
St =) (i = 9)?
i/1

1 .
Varpee =~ E ,/1(yz -¥y)
l

R-squared

Then, we decided to use
another variable to try to
understand our data better
And, now we can even fit the
model to the data points

n
Stes =) 0= [, fy ~ model
l

1o 5
Varges = n § _/1(3’i - f)
i

R-squared

This is a convenient measure to check how our model performs in explaining
the variation in our data sample

In other words — how well our model minimises the variance compare to
calculating just a simple mean

Can be negative — if our model is not useful at all...

1 n .
)_’=—Z, Vi SSTot=Z, (i —)
n 1/1 l/1

n
SSpes =) 00— f)? fi — model
l

SSRes

R2=1-
SSTot

Practical part

Toy data pre-processing

Training t
Training t
GAN moc

ne perceptron
ne perceptron with pre-processed data (PCA)

el — training a sine wave generator

Toy pre-processin

generic script for data exploration - add missing values
with a strategy NAN for missing and and mean for the wvalues

to be inputed Write these lines, the data

import numpy as np
from sklearn.preprocessing import StandardScaler 'II t) ‘(j (j .f
from sklearn.impute import SimpleImputer as Imputer WI e prOVI e Or you

from matplotlib import pyplot as plt

data = np.load('sample.npy')

Plot raw data.

plt.figure('Raw data set')

plt.title('Raw data with missing wvalues')
plt.plot(data)

Impute missing values.
imputer = Imputer()
data = imputer.fit transform(data)

plt.figure('Processed Data Set')
plt.title('New data with imputed missing values')
plt.plot(data)

Scale data.
scaler = StandardScaler()
data = scaler.fit_transform(data)

plt.figure('Scaled data set')
plt.title('Scaled data set - ready for the training')
plt.plot(data)

pLlt.show()

Toy pre-processing

ARE> Q=M B ARE> Q=X B
Vf A /Aﬂ 801 W

U T U T T T u
40 60 80 100 o] 20 40

Filling the gaps and scaling
W are good tricks for training
|

ata with imputed missing values

data preparation

100
80
60
a0 4
20 1
04

T .
0 20

A Scaled data set

A€ $Q=w B

Perceptron training — raw data

Iris setosa Iris versicolor

Perceptron training — raw data

samples Petal ~—
(instances, observations)

Sepal Petal Class
length width length label

150 | 59 30 5.0 1.8 Virginica
B N (1)
l I l\ 8 x!
/ Class labels .
Features (targets) X: =
(attributes, measurements, dimensions) J
D) — (@ () : (m)
x® = (xl , ., Xy) - One instance X;

Perceptron training — raw data

s* s setosa

® x Versicolor

Perceptron training — raw data

Loss function evolution

Our algorithm learned this
decision boundary line

Perceptron training — PCA

decomposition seguence
from sklearn import decomposition
pca = decomposition.PCA()

here we do all the math...
iris pca = pca.fit _transform(iris x1)

directions of data variations
pca.explained variance ratio
array([0.9246l1621, 0.05301557, 0.01718514, 0.00518309])

drop the last two features
pca = decomposition.PCA(n_components=2)

repeat PCA

iris X prime = pca.fit transform(iris x1)
iris X prime.shape

(150, 2)
pca.explained variance ratio .sum()
0.97763177502480336

This 97.7% is a compromise, could include the third variable to
increase this — depends on the problem and possible consequences

Perceptron training — PCA

Ok, let’s have a look at what happend

use matplotlib to visualise
fig = plt.figure(figsize=(20,7))
input data = fig.add subplot(121)

before the transfomation...

input data.scatter(iris x1[:,0], iris x1[:,1], c=x2, s=40)
<matplotlib.collections.PathCollection object at Ox/ffdb3adu=c0>
input data.set title('Before transformation')
<matplotlib.text.Text object at Ox/TT4b3a92290=>

... and after

tr data = fig.add subplot(122)

tr data.scatter(iris X prime[:,0], iris X prime[:,1], c=x2, s=40)
<matplotlib.collections.PathCollection object at Ox/ff4b3az/bdb=>
tr data.set title(After transformation')

<matplotlib.text.Text object at Lx/ffdb3afZt9b>

plt.show()

Perceptron training — PCA

We see some interesting changes

| strongly recommend you to use the python code we developed
earlier to try to check the performance with the reduced data set!

GAN — new and powerful

First appeared in 2014/2015 — amazing fact: we can build two
competing models (usual we mean two deep ANNs) where on can

fool the other

An adversary can learn to generate fake data that can make any
trained model to make bad decisions 100% of a time

These fake data (synthetic data) may not resemble the real data at
all! But in time we also can make this happen

For some time it seemed that the ANN approach is doomed!

GAN mastery

It is kind of scary, that the
Al is able to produce such
Images...

They can be used to fool a
trained model for face
recognition to make a bad
decision

But this weakness can be
forge into success as well we
just need a bit of
imagination!

A tale of two kingdoms

This story goes in different flavours, but the conclusions are always
the same!

Imagine you have two kingdoms, each have its own blacksmiths
that can make armour and weapon. One king never allowed any
conflicts and the other demanded constant cross-checks of armour
and weapon

You can guess which kingdom would be better in military
technology!

The same goes for the GAN approach — constant challenge!

Events generators

The idea is actually quite old: physics generators that mimic Nature

We can say that the generators tries to ,map low-dimension data
to high-dimension data”

Classification models do the opposite!

So, the training were two models make an attempt to weaken each
other and on the long run enhance each other is called adversarial
learning

So, when designing a GAN system we need two models!

Adversarial systems

Adversarial learning

Data A B Need two models A and B
l | The output of B is going to
i) [output A_|_Improve i A improve the A and the output of
Model A Dodel B A do the same for B
mprove [0 g e One model will need , a real
e oy data” sample for training

Not all data are going to be fake

GAN architecture

Here the generator model is using
the noise to produce fake data that
are fed to the second model

Improve

cae | Confuse The second one is a classification
sample model that makes an attempt on
detecting the fake data

Random Generator
noise natwork

The differences between the
fedl generated and real data are used to

sample Train Discriminator improve the generatOr
network

Real data are used to train the
discriminator model

Simple GAN

Can implement a simple GAN system
that generates sine waveform and feed
it to the discriminator that aims at
recognition fake/true

Two MLP ANNs

Code can be written by hand to
understand the basic principles of such
systems (just need numpy)

Performance of the Generator

Example output of the generator for different settings

1.00

0.75 A

0504 Z

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 A

-1.00 T

1.00

0.75 A

s
0.50 A

0.25

0.00 A

—0.25 A

—0.50 A

—0.75 A

-1.00

The END is The BEGINNING

GAN optimisation rules

Let set G and D to represent the generator and discriminator models respectively, the
performance function is V. The optimisation objective can be written as follow:

mgin mng(D, G) = Ez[logD(x)] + E3 [109(1 - D(’?*))]

Here: X - real samples, X* = G(z) - generated samples (z represents noise), Ez[f] is the
average value of any function over the sample space

Model D should maximise the ,,good” prediction for the real sample - we are looking for the
max — gradient ascent update rule

- - 1 l/m
Op « Op +1-—V; 2 [logD(a’c’) + log(l — D()?*))]
m "D Lj/1
Model G must trick the discriminator, thus, it minimise the 1 — D(x*) = 1 — D(Q(z))

.1 i/m .
g« Bg—r- =75 Zi/l [log(1 = DGEY)]

