
Machine Learning 
ApplicationsTomasz Szumlak

AGH-UST 



Principal directions

 Let’s have a look at the plot below:

 Here, u and v are called the principal direction of data variation (𝒖 is the most important one, 𝒗 is 
next and perpendicular to u)

 Anything interesting about the transformation (𝑋, 𝑌) → (𝑈, 𝑉)?

 After the transformation data set is compact (mean values are 0) and decorrelated

2

Principal 
directions



And reduction…?
Consider this: what if variation in data is caused by a specific relation? For instance:

 Actually, we could say, that there is no variation along the second principal direction, i.e., 
there is no vital information for ML algo.

 Can treat this as 1𝑑 data set without compromising the overall performance of classification

3

„All data variation” in 
the principal direction 𝒖

Noise related to 
measurement in 𝒗



Get some feeling



The math behind PCA
Most of the times (or even all of the time) we are going to use libraries to do the job! That is 
fine, however, learning a bit what is under the hood is a good thing!

 First given the data we can compute the covariance matrix:

5

Σ𝑖𝑗 = 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝜇𝑗 = 𝐸 𝑋𝑖𝑋𝑗 − 𝜇𝑖𝜇𝑗

Σ =
𝑋1 − 𝜇1 𝑋1 − 𝜇1 ⋯ 𝑋1 − 𝜇1 𝑋𝑘 − 𝜇𝑘

⋮ ⋱ ⋮
𝑋𝑘 − 𝜇𝑘 𝑋1 − 𝜇1 ⋯ 𝑋𝑘 − 𝜇𝑘 𝑋𝑘 − 𝜇𝑘

Σ =
𝑣𝑎𝑟 𝑋1 ⋯ 𝑐𝑜𝑣 𝑋1, 𝑋𝑘

⋮ ⋱ ⋮
𝑐𝑜𝑣 𝑋𝑘 , 𝑋1 ⋯ 𝑣𝑎𝑟 𝑋2



The math behind PCA
 Having the covariance matrix one can find the principal components by computing its eigen-
vectors and eigen-values

 In other words we would say that we want to find a transformation matrix to find the axis 
system in which the covariance matrix is diagonal (or in canonical form)

 The eigen-vector corresponding to the largest eigen-value is the direction of the greatest 
variation

We start from the characteristic equation (or polynomial) Σ − 𝜆𝕀 = 0, which for Σ matrix 
of size 𝑛 × 𝑛 has 𝑛 roots

 Next, we calculate eigen-vectors: Σ𝒙𝑖 = 𝜆𝒙𝑖

 The eigen-vectors should be normalised: 𝒙𝑖 ∙ 𝒙𝑖
𝑇 = 𝒙𝑖

𝑇 ∙ 𝒙𝑖 = 1

We can combine the eigen-vectors and write as a transformation matrix.

6



The math behind PCA
 The transformation matrix

 So, having calculated e-vectors and e-values, we can use it to transform all data points into a 
data set where the variables are not correlated: (𝑋, 𝑌) → (𝑈, 𝑉)

 In this new coordinate system the new correlation matrix is diagonal and can be written as Λ

7

𝕋 = 𝒙1 𝒙2 𝒙3 , 𝕋𝕋𝑇 = 𝕋𝑇𝕋 = 𝕀

Σ 𝒙1 𝒙2 𝒙3 = 𝒙1 𝒙2 𝒙3

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

Σ𝕋 = 𝕋Λ → 𝕋𝑇Σ𝕋 = Λ



It is definitely worth considering
 If we have data as follow:

We do the following:

 Calculate the mean values: 𝜇1, 𝜇2 , Σ and the transformation matrix 𝕋

 Now, each data point can be transformed from 𝑥1, 𝑥2 → 𝜙1, 𝜙2 with the equation: 𝒑𝜙 = 𝒑𝑥 − 𝝁𝑥 𝕋

 This kind of data pre-processing is very commonly used for many different types of ML analyses!

8



LHCb VELO Pixel analysis – activation

The surrogate function is what we use 
to calibrate each pixel to be able to 
translate ToT counts into collected 
charge (deposited energy) 

Surrogate function has the following 
form:

f(x) = p0 + p1*x - c/(x-t)



LHCb VELO Pixel analysis – exploration



LHCb VELO Pixel analysis – PCA 



LHCb VELO Pixel analysis – Model 



13

ML your way

 The way you can start to build your own start-to-end projects can be 
facilitated by tools such, conda, pycharm, git, etc.

 A lot of steps (data pre-processing, feature extraction) can be approached in 
quite abstract way, thus a set of simple tools can be prepared and shared 
between different projects

 Key aspect is: always understand your data!

 Elements of statistical data analysis are the key here.



14

 2-point validation works like that (variation on this is k-folding):
 Take the whole data set and divide it 0.5:0.25:0.25

 Use the first subset to make training, use the second to validate and tune the hyper-parameters

 Use the last part to evaluate the results

How to make sure we are doing a good job

Data

Initial training (explore data, 
understand features, 
transformations) Validate training tune 

hyper-parameters

Final evaluation – is it 
any good?



Hands-on approach
 Below is not a „magic recipe” it is more like a set of good rules (may not be 
possible always to go „exactly like that”)

 Collect data (aka experiment), can use structured and unstructured sets

 Pre-processing – format data accordingly (algorithm dependent), missing 
data and outliers are delicate to handle

 Data exploration and feature engineering (this is the most time-consuming 
part of the ML)

 Fit the model using training and validation sets

 Final tests on evaluation data set

 Deploy! May open a can of worms…

15



Errors

 Testing is a probabilistic process – the answer is never definite (depends on 
experiment, significance, etc…)

When training an algorithm (ML) we need to prepare for the same – not 
every answer will be perfect!

 In principle errors are related to the fact that we always operate on finite 
samples – not on populations (regression of information)

 Type I error – reject 𝐻0 when it is true (false negative)

 Type II error – accept it when it is false (false positive)

16



Confusion Matrix (I)
 This is an important tool to asses the quality of our trained model 

 True positive (TP) – predicted = actual
 True negative (TN) – predicted = actual
 False negative (FN) – predicted ≠ actual
 False positive (FP) – predicted ≠ actual

17



18

Confusion Matrix (II)



Confusion Matrix
 Base on the CM we can provide some measures to asses the quality (quantitative!)

 Precision (P): or how are we sensitive to true positive hits (how often our signal is predicted 
correctly)

 Recall (R): sensitivity (true positive rate), what fraction of true signal was predicted as signal

 F1 score: (harmonic mean of the precision and recall)

 Specificity (S): what fraction of noise was predicted as noise

19

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃



Tuning the decision threshold
 Say, we trained a model (the plot below may represent a logistic regression 
problem)

What decision threshold should we choose? Are there any other stipulations 
than the loss?



ROC
 Receiver operating characteristic curve

 It expresses the dependence of TP events rate (sensitivity) versus FP events 
rate (aka 1-Specificity)

21

This basically shows how kind 
of a trade-off we are willing 
to accept – the measure of 
goodness is area under ROC -
𝐴𝑅𝑂𝐶 (AUC)



ROC

The best model

Green threshold is 
better than red



R-squared

We collected a data sample 
and want to understand its 
variance
For the moment we just 
consider the data set as 1-dim 
one

𝑠𝑇𝑜𝑡 =෍
𝑖/1

𝑛

𝑦𝑖 − ത𝑦 2

𝑉𝑎𝑟𝑇𝑜𝑡 =
1

𝑛
෍

𝑖/1

𝑛

𝑦𝑖 − ത𝑦 2



R-squared

Then, we decided to use 
another variable to try to 
understand our data better
And, now we can even fit the 
model to the data points

𝑉𝑎𝑟𝑅𝑒𝑠 =
1

𝑛
෍

𝑖/1

𝑛

𝑦𝑖 − 𝑓𝑖
2

𝑠𝑅𝑒𝑠 =෍
𝑖/1

𝑛

𝑦𝑖 − 𝑓𝑖
2 , 𝑓𝑖 −model



R-squared
 This is a convenient measure to check how our model performs in explaining 
the variation in our data sample

 In other words – how well our model minimises the variance compare to 
calculating just a simple mean

 Can be negative – if our model is not useful at all…

25

ത𝑦 =
1

𝑛
෍

𝑖/1

𝑛

𝑦𝑖 𝑠𝑠𝑇𝑜𝑡 =෍
𝑖/1

𝑛

𝑦𝑖 − ത𝑦 2

𝑠𝑠𝑅𝑒𝑠 =෍
𝑖/1

𝑛

𝑦𝑖 − 𝑓𝑖
2 , 𝑓𝑖 −model

𝑅2 = 1 −
𝑠𝑠𝑅𝑒𝑠
𝑠𝑠𝑇𝑜𝑡



Practical part
 Toy data pre-processing

 Training the perceptron

 Training the perceptron with pre-processed data (PCA)

 GAN model – training a sine wave generator



27

Toy pre-processing

Write these lines, the data 
will be provided for you



28

Toy pre-processing

Filling the gaps and scaling 
are good tricks for training 
data preparation



Perceptron training – raw data

29

Iris versicolorIris setosa



Perceptron training – raw data

30

𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑛

(𝑖)
- one instance

𝑥𝑗 =

𝑥𝑗
(1)

.

.

.

𝑥𝑗
(𝑚)



Perceptron training – raw data

31



Perceptron training – raw data

32

Our algorithm learned this 
decision boundary line

Loss function evolution



This 97.7% is a compromise, could include the third variable to 
increase this – depends on the problem and possible consequences

33

Perceptron training – PCA



Ok, let’s have a look at what happend

34

Perceptron training – PCA



We see some interesting changes

 I strongly recommend you to use the python code we developed 
earlier to try to check the performance with the reduced data set!

35

Perceptron training – PCA



GAN – new and powerful
 First appeared in 2014/2015 – amazing fact: we can build two 
competing models (usual we mean two deep ANNs) where on can 
fool the other

 An adversary can learn to generate fake data that can make any 
trained model to make bad decisions 100% of a time

 These fake data (synthetic data) may not resemble the real data at 
all! But in time we also can make this happen

 For some time it seemed that the ANN approach is doomed!



GAN mastery

 It is kind of scary, that the 
AI is able to produce such 
images…

 They can be used to fool a 
trained model for face 
recognition to make a bad 
decision

 But this weakness can be 
forge into success as well we 
just need a bit of 
imagination!



A tale of two kingdoms
 This story goes in different flavours, but the conclusions are always 
the same!

 Imagine you have two kingdoms, each have its own blacksmiths 
that can make armour and weapon. One king never allowed any 
conflicts and the other demanded constant cross-checks of armour 
and weapon

 You can guess which kingdom would be better in military 
technology!

 The same goes for the GAN approach – constant challenge!



Events generators
 The idea is actually quite old: physics generators that mimic Nature

We can say that the generators tries to „map low-dimension data 
to high-dimension data”

 Classification models do the opposite!

 So, the training were two models make an attempt to weaken each 
other and on the long run enhance each other is called adversarial 
learning

 So, when designing a GAN system we need two models!



Adversarial systems

 Adversarial learning
 Need two models A and B

 The output of B is going to 
improve the A and the output of 
A do the same for B

 One model will need „a real 
data” sample for training

 Not all data are going to be fake 



GAN architecture

 Here the generator model is using 
the noise to produce fake data that 
are fed to the second model

 The second one is a classification 
model that makes an attempt on 
detecting the fake data

 The differences between the 
generated and real data are used to 
improve the generator

 Real data are used to train the 
discriminator model



Simple GAN
 Can implement a simple GAN system 
that generates sine waveform and feed 
it to the discriminator that aims at 
recognition fake/true

 Two MLP ANNs

 Code can be written by hand to 
understand the basic principles of such 
systems (just need numpy)



Performance of the Generator
 Example output of the generator for different settings



The END is The BEGINNING



GAN optimisation rules
 Let set 𝒢 and 𝒟 to represent the generator and discriminator models respectively, the 
performance function is 𝒱. The optimisation objective can be written as follow:

 Here: Ԧ𝑥 - real samples, Ԧ𝑥∗ = 𝒢 𝑧 - generated samples (𝑧 represents noise), 𝔼 Ԧ𝑥 𝑓 is the 
average value of any function over the sample space

Model 𝒟 should maximise the „good” prediction for the real sample - we are looking for the 
max – gradient ascent update rule

Model 𝒢 must trick the discriminator, thus, it minimise the 1 − 𝒟 Ԧ𝑥∗ = 1 − 𝒟 𝒢 𝑧

min
𝒢

max
𝒟

𝒱 𝒟, 𝒢 = 𝔼 Ԧ𝑥 𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝔼 Ԧ𝑥∗ 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒟 ← Ԧ𝜃𝒟 + 𝑟 ∙
1

𝑚
𝛻
𝜃𝒟
෍

𝑖/1

𝑖/𝑚

𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒢 ← Ԧ𝜃𝒢 − 𝑟 ∙
1

𝑚
𝛻
𝜃𝒢
෍

𝑖/1

𝑖/𝑚

𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗


