
Machine Learning 
ApplicationsTomasz Szumlak

AGH-UST 



Principal directions

 Let’s have a look at the plot below:

 Here, u and v are called the principal direction of data variation (𝒖 is the most important one, 𝒗 is 
next and perpendicular to u)

 Anything interesting about the transformation (𝑋, 𝑌) → (𝑈, 𝑉)?

 After the transformation data set is compact (mean values are 0) and decorrelated

2

Principal 
directions



And reduction…?
Consider this: what if variation in data is caused by a specific relation? For instance:

 Actually, we could say, that there is no variation along the second principal direction, i.e., 
there is no vital information for ML algo.

 Can treat this as 1𝑑 data set without compromising the overall performance of classification

3

„All data variation” in 
the principal direction 𝒖

Noise related to 
measurement in 𝒗



Get some feeling



The math behind PCA
Most of the times (or even all of the time) we are going to use libraries to do the job! That is 
fine, however, learning a bit what is under the hood is a good thing!

 First given the data we can compute the covariance matrix:

5

Σ𝑖𝑗 = 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝜇𝑗 = 𝐸 𝑋𝑖𝑋𝑗 − 𝜇𝑖𝜇𝑗

Σ =
𝑋1 − 𝜇1 𝑋1 − 𝜇1 ⋯ 𝑋1 − 𝜇1 𝑋𝑘 − 𝜇𝑘

⋮ ⋱ ⋮
𝑋𝑘 − 𝜇𝑘 𝑋1 − 𝜇1 ⋯ 𝑋𝑘 − 𝜇𝑘 𝑋𝑘 − 𝜇𝑘

Σ =
𝑣𝑎𝑟 𝑋1 ⋯ 𝑐𝑜𝑣 𝑋1, 𝑋𝑘

⋮ ⋱ ⋮
𝑐𝑜𝑣 𝑋𝑘 , 𝑋1 ⋯ 𝑣𝑎𝑟 𝑋2



The math behind PCA
 Having the covariance matrix one can find the principal components by computing its eigen-
vectors and eigen-values

 In other words we would say that we want to find a transformation matrix to find the axis 
system in which the covariance matrix is diagonal (or in canonical form)

 The eigen-vector corresponding to the largest eigen-value is the direction of the greatest 
variation

We start from the characteristic equation (or polynomial) Σ − 𝜆𝕀 = 0, which for Σ matrix 
of size 𝑛 × 𝑛 has 𝑛 roots

 Next, we calculate eigen-vectors: Σ𝒙𝑖 = 𝜆𝒙𝑖

 The eigen-vectors should be normalised: 𝒙𝑖 ∙ 𝒙𝑖
𝑇 = 𝒙𝑖

𝑇 ∙ 𝒙𝑖 = 1

We can combine the eigen-vectors and write as a transformation matrix.

6



The math behind PCA
 The transformation matrix

 So, having calculated e-vectors and e-values, we can use it to transform all data points into a 
data set where the variables are not correlated: (𝑋, 𝑌) → (𝑈, 𝑉)

 In this new coordinate system the new correlation matrix is diagonal and can be written as Λ

7

𝕋 = 𝒙1 𝒙2 𝒙3 , 𝕋𝕋𝑇 = 𝕋𝑇𝕋 = 𝕀

Σ 𝒙1 𝒙2 𝒙3 = 𝒙1 𝒙2 𝒙3

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

Σ𝕋 = 𝕋Λ → 𝕋𝑇Σ𝕋 = Λ



It is definitely worth considering
 If we have data as follow:

We do the following:

 Calculate the mean values: 𝜇1, 𝜇2 , Σ and the transformation matrix 𝕋

 Now, each data point can be transformed from 𝑥1, 𝑥2 → 𝜙1, 𝜙2 with the equation: 𝒑𝜙 = 𝒑𝑥 − 𝝁𝑥 𝕋

 This kind of data pre-processing is very commonly used for many different types of ML analyses!

8



LHCb VELO Pixel analysis – activation

The surrogate function is what we use 
to calibrate each pixel to be able to 
translate ToT counts into collected 
charge (deposited energy) 

Surrogate function has the following 
form:

f(x) = p0 + p1*x - c/(x-t)



LHCb VELO Pixel analysis – exploration



LHCb VELO Pixel analysis – PCA 



LHCb VELO Pixel analysis – Model 



13

ML your way

 The way you can start to build your own start-to-end projects can be 
facilitated by tools such, conda, pycharm, git, etc.

 A lot of steps (data pre-processing, feature extraction) can be approached in 
quite abstract way, thus a set of simple tools can be prepared and shared 
between different projects

 Key aspect is: always understand your data!

 Elements of statistical data analysis are the key here.



14

 2-point validation works like that (variation on this is k-folding):
 Take the whole data set and divide it 0.5:0.25:0.25

 Use the first subset to make training, use the second to validate and tune the hyper-parameters

 Use the last part to evaluate the results

How to make sure we are doing a good job

Data

Initial training (explore data, 
understand features, 
transformations) Validate training tune 

hyper-parameters

Final evaluation – is it 
any good?



Hands-on approach
 Below is not a „magic recipe” it is more like a set of good rules (may not be 
possible always to go „exactly like that”)

 Collect data (aka experiment), can use structured and unstructured sets

 Pre-processing – format data accordingly (algorithm dependent), missing 
data and outliers are delicate to handle

 Data exploration and feature engineering (this is the most time-consuming 
part of the ML)

 Fit the model using training and validation sets

 Final tests on evaluation data set

 Deploy! May open a can of worms…

15



Errors

 Testing is a probabilistic process – the answer is never definite (depends on 
experiment, significance, etc…)

When training an algorithm (ML) we need to prepare for the same – not 
every answer will be perfect!

 In principle errors are related to the fact that we always operate on finite 
samples – not on populations (regression of information)

 Type I error – reject 𝐻0 when it is true (false negative)

 Type II error – accept it when it is false (false positive)

16



Confusion Matrix (I)
 This is an important tool to asses the quality of our trained model 

 True positive (TP) – predicted = actual
 True negative (TN) – predicted = actual
 False negative (FN) – predicted ≠ actual
 False positive (FP) – predicted ≠ actual

17



18

Confusion Matrix (II)



Confusion Matrix
 Base on the CM we can provide some measures to asses the quality (quantitative!)

 Precision (P): or how are we sensitive to true positive hits (how often our signal is predicted 
correctly)

 Recall (R): sensitivity (true positive rate), what fraction of true signal was predicted as signal

 F1 score: (harmonic mean of the precision and recall)

 Specificity (S): what fraction of noise was predicted as noise

19

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃



Tuning the decision threshold
 Say, we trained a model (the plot below may represent a logistic regression 
problem)

What decision threshold should we choose? Are there any other stipulations 
than the loss?



ROC
 Receiver operating characteristic curve

 It expresses the dependence of TP events rate (sensitivity) versus FP events 
rate (aka 1-Specificity)

21

This basically shows how kind 
of a trade-off we are willing 
to accept – the measure of 
goodness is area under ROC -
𝐴𝑅𝑂𝐶 (AUC)



ROC

The best model

Green threshold is 
better than red



R-squared

We collected a data sample 
and want to understand its 
variance
For the moment we just 
consider the data set as 1-dim 
one

𝑠𝑇𝑜𝑡 =
𝑖/1

𝑛

𝑦𝑖 − ത𝑦 2

𝑉𝑎𝑟𝑇𝑜𝑡 =
1

𝑛


𝑖/1

𝑛

𝑦𝑖 − ത𝑦 2



R-squared

Then, we decided to use 
another variable to try to 
understand our data better
And, now we can even fit the 
model to the data points

𝑉𝑎𝑟𝑅𝑒𝑠 =
1

𝑛


𝑖/1

𝑛

𝑦𝑖 − 𝑓𝑖
2

𝑠𝑅𝑒𝑠 =
𝑖/1

𝑛

𝑦𝑖 − 𝑓𝑖
2 , 𝑓𝑖 −model



R-squared
 This is a convenient measure to check how our model performs in explaining 
the variation in our data sample

 In other words – how well our model minimises the variance compare to 
calculating just a simple mean

 Can be negative – if our model is not useful at all…

25

ത𝑦 =
1

𝑛


𝑖/1

𝑛

𝑦𝑖 𝑠𝑠𝑇𝑜𝑡 =
𝑖/1

𝑛

𝑦𝑖 − ത𝑦 2

𝑠𝑠𝑅𝑒𝑠 =
𝑖/1

𝑛

𝑦𝑖 − 𝑓𝑖
2 , 𝑓𝑖 −model

𝑅2 = 1 −
𝑠𝑠𝑅𝑒𝑠
𝑠𝑠𝑇𝑜𝑡



Practical part
 Toy data pre-processing

 Training the perceptron

 Training the perceptron with pre-processed data (PCA)

 GAN model – training a sine wave generator



27

Toy pre-processing

Write these lines, the data 
will be provided for you



28

Toy pre-processing

Filling the gaps and scaling 
are good tricks for training 
data preparation



Perceptron training – raw data

29

Iris versicolorIris setosa



Perceptron training – raw data

30

𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑛

(𝑖)
- one instance

𝑥𝑗 =

𝑥𝑗
(1)

.

.

.

𝑥𝑗
(𝑚)



Perceptron training – raw data

31



Perceptron training – raw data

32

Our algorithm learned this 
decision boundary line

Loss function evolution



This 97.7% is a compromise, could include the third variable to 
increase this – depends on the problem and possible consequences

33

Perceptron training – PCA



Ok, let’s have a look at what happend

34

Perceptron training – PCA



We see some interesting changes

 I strongly recommend you to use the python code we developed 
earlier to try to check the performance with the reduced data set!

35

Perceptron training – PCA



GAN – new and powerful
 First appeared in 2014/2015 – amazing fact: we can build two 
competing models (usual we mean two deep ANNs) where on can 
fool the other

 An adversary can learn to generate fake data that can make any 
trained model to make bad decisions 100% of a time

 These fake data (synthetic data) may not resemble the real data at 
all! But in time we also can make this happen

 For some time it seemed that the ANN approach is doomed!



GAN mastery

 It is kind of scary, that the 
AI is able to produce such 
images…

 They can be used to fool a 
trained model for face 
recognition to make a bad 
decision

 But this weakness can be 
forge into success as well we 
just need a bit of 
imagination!



A tale of two kingdoms
 This story goes in different flavours, but the conclusions are always 
the same!

 Imagine you have two kingdoms, each have its own blacksmiths 
that can make armour and weapon. One king never allowed any 
conflicts and the other demanded constant cross-checks of armour 
and weapon

 You can guess which kingdom would be better in military 
technology!

 The same goes for the GAN approach – constant challenge!



Events generators
 The idea is actually quite old: physics generators that mimic Nature

We can say that the generators tries to „map low-dimension data 
to high-dimension data”

 Classification models do the opposite!

 So, the training were two models make an attempt to weaken each 
other and on the long run enhance each other is called adversarial 
learning

 So, when designing a GAN system we need two models!



Adversarial systems

 Adversarial learning
 Need two models A and B

 The output of B is going to 
improve the A and the output of 
A do the same for B

 One model will need „a real 
data” sample for training

 Not all data are going to be fake 



GAN architecture

 Here the generator model is using 
the noise to produce fake data that 
are fed to the second model

 The second one is a classification 
model that makes an attempt on 
detecting the fake data

 The differences between the 
generated and real data are used to 
improve the generator

 Real data are used to train the 
discriminator model



Simple GAN
 Can implement a simple GAN system 
that generates sine waveform and feed 
it to the discriminator that aims at 
recognition fake/true

 Two MLP ANNs

 Code can be written by hand to 
understand the basic principles of such 
systems (just need numpy)



Performance of the Generator
 Example output of the generator for different settings



The END is The BEGINNING



GAN optimisation rules
 Let set 𝒢 and 𝒟 to represent the generator and discriminator models respectively, the 
performance function is 𝒱. The optimisation objective can be written as follow:

 Here: Ԧ𝑥 - real samples, Ԧ𝑥∗ = 𝒢 𝑧 - generated samples (𝑧 represents noise), 𝔼 Ԧ𝑥 𝑓 is the 
average value of any function over the sample space

Model 𝒟 should maximise the „good” prediction for the real sample - we are looking for the 
max – gradient ascent update rule

Model 𝒢 must trick the discriminator, thus, it minimise the 1 − 𝒟 Ԧ𝑥∗ = 1 − 𝒟 𝒢 𝑧

min
𝒢

max
𝒟

𝒱 𝒟, 𝒢 = 𝔼 Ԧ𝑥 𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝔼 Ԧ𝑥∗ 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒟 ← Ԧ𝜃𝒟 + 𝑟 ∙
1

𝑚
𝛻
𝜃𝒟


𝑖/1

𝑖/𝑚

𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒢 ← Ԧ𝜃𝒢 − 𝑟 ∙
1

𝑚
𝛻
𝜃𝒢


𝑖/1

𝑖/𝑚

𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗


