
Introducing multithreading mechanisms in
ETA framework for event loop data

processing

AGH Summer School 2021

Jakub Skrzyński
Project supervisor: Bartek Rachwał

● Framework designed to improve process of
building test beam analysis applications

● It processes huge amount of data and with
number of parameters to produce results

ETA framework

● Much data, many parameters
● Whole process consisting of: filtering data,

filling histograms, fitting and analysing of final
cumulative plots

● Event loop stage: filtering data, filling
histograms

Data Analysis: The problem

● Requires less time
● Better utilizes the resources
● Filtering events does not require sequential

processing - it may be analyzed separately

Concurrency…? Why to do many things at the same time?

● Concurrent
● Parallel

Concurrent way requires us to
sometimes lock object for modification

Parallel execution is done through
separate instances of program that do
not interfere with each other

How to approach multi-tasking?

● RDataFrame (advised way)

● TSelector with the driver
○ PROOF
○ TTreeProcessorMP (currently causes crash)

● TProcessExecutor (issue of shared objects)
● Own implementation (std::thread)

Ready to use mechanisms provided by ROOT

● It is final product
● The class is difficult to extend and wrap
● Complicated
● Complex

Why not the RDataFrame?

Include dependency for RDataFrame implementation file

● Allows to easily traverse the TTree
● Enables user to easily access the nTuple data
● Base for multithreading provided by ROOT
● Easy & clear to use interface

TSelector

● Main goal is to achieve easy way to develop
analysis

● Frameworks do set regulations on way of
coding – using framework has huge impact on
how the code looks like

Why framework?

● It derives from TSelector provided by user
● Enables easy preparation of processing

procedure

Implemented TSelector wrapper

● One can use ROOT provided functionalities
such as PROOF, but it seems it is not best
solution in this case

● One can create multiple threads with use of
implemented our ETA Framework STL based
mechanism

Running the tree loop

● If multiple threads access the same variable objects, we have to care about
concurrency. This is suboptimal solution as locking histograms may cause delays
and increase processing time.

● I have decided to clone varying objects, so each thread has separate one

Multithreading

Multithreading - implemented architecture

Multithreading - implemented architecture

How to use the code? - example implementation

● Develop complete toolset for threads
management
○ Worker process class
○ Master process class

● Test all components and ensure that all cases
are covered

● (*) Further development to allow PROOF
processing (Motivated by whole analysis
preservation idea)

Plans for future

Thank you for your attention!

