
Exploration of the evolutionary mutation footprint
on Generative Adversarial Networks

Pawel Kopciewicz
AGH University of Science and Technology

Krakow, Poland, al. Mickiewicza 30
Email: Pawel.Kopciewicz@fis.agh.edu.pl

Vitalii Morskyi
Rzeszow University of Technology

Rzeszow, Poland, al. Powstancow Warszawy 12
Email: Vitalij20358@gmail.com

Abstract—In the last few years, the Generative Adversarial
Networks (GAN) proved to be an excellent tool for image
generation and have found a variety of practical applications. In
this paper, the specific evolutional footprint for GAN generator
training improvement is proposed and examined. The idea behind
the research is that the generator’s weights learning at the
constant discriminator can be optionally tackled as a complex
optimization problem. Although the fitness function for the
generator cannot be straightly constructed, its local state can
be evaluated in the function of the discriminator performance.
One can assume that the fitness function may have an unknown
but potentially high number of local minima, which can restrict
the gradient descent to move towards some directions. The
vast number of degrees of freedom usually seen in the image
processing layers exceeds the standard problems for intelligent
optimization algorithms, therefore the hybrid combination of
the gradient descent with the selected parts of differential
evolutionary algorithms, one of the best optimization methods
in the field, are considered.

I. INTRODUCTION

The Generative Adversarial Networks (GANs) [1] are re-
cently one of the most investigated machine learning domains,
with remarkable applications varying from computer vision,
semantic segmentation, and natural language processing. Their
recent state-of-art review with lately advances on the genera-
tive models can be found in [2] [3].

This paper investigates the possible applications of various
evolutional approaches and their footprint on the generative
network training, especially the mutation phenomena. The
mutation is a part of the Genetic Algorithm (GA) family,
which originated long before the GANs [5] and become
very popular and researched area [6] forming the ground for
other optimization methods based on nature inspiration [16],
strongly developed in the recent years [17]. In particular,
the Differential Evolutionary (DE) algorithms [18], which
originated from GA [19] and continuously developed [20] in
various directions [21] [22] [23], proved to be a powerful
tool for various optimization problems [24] at both single and
multi-objective optimization [25]. The idea of acquiring the
evolutional training was present in the neural networks before
creation of GAN [7] [8] with alternative training by GA [9].
Since that time, various modifications [10] and applications
can be spotted, e.g. time series forecasting [11] [12]. Even
though the GA alone have much less training capabilities [13],
the hybrid models can outperform the usual back-propagation

approach [14] [15]. The adoption of GA and later DE was wide
and reached the point that the whole structure of the generator
in a generative model obeyed to a GA optimization, dubbed
as Evolutional GAN [26]. The multiple improvements were
proposed [27] [28], including the multi-objective optimization
[29] or even using GANs for optimization other problems [30].

The paper focuses on various approaches of mutations and
their footprint on the generetor training. The hybrid combined
models of DE in the GAN training in this paper is to use
the mutation and selection step on the generator weights to
support it at improving its loss function. The mutation role in
optimization algorithm in general is to cope with local minima
attractivenes, whilst the actual optimization role is carried
out primarily by selection [31]. There are many mutation
strategies that can be found in literature, e.g. mutation based
on displacing, inversing, scrambling, bit flipping or reversing
[32]. Their actual usage and performance were widely tested
[32] [33]. Various mutation strategies were applied to specific
differential evolutionary models [34], i.e. for solving global
optimization problems [35], which even emphasized their role
in the optimization process to be an actual impactful on the
optimization [36] [37]. The mutation approach investigated
in this paper is a bitwise mutation for the floating number
with adjustable properties over time and symmetric masks
applied to the mutated weights. The paper draws out the
possible yield on the generator training to support the gradient
algorithm and investigates the actual mutation footprint with
respect to the discriminator. It makes an argument that a good
suited mutation strategy can support the GAN training more
than it could result from the random improvement caused by
random processes. The image material for GAN is a mnist
digits databank. The improvement on the image generation
is particularly visible on the best generated digits, that have
the significantly higher quality to the best digits generated
without mutations, however, with the bad images quality and
their ratio not changed for both models, that would not happen
if mutation procedure was granting a random impact on the
generative model.

The paper is constructed as follows. The evolutional con-
cepts are thoroughly described in Section II, along with the
expected impact on the generative model. The results are
discussed in Section IV. They are preceded by the brief
description of the computing and experimental setup in Sec-



Fig. 1. The GAN structure with used in the studies.

tion III. The paper is finished by the conclusions and proposed
applications in Section V.

II. EVOLUTIONAL TRAINING CONCEPTS

The mutation strategy was adjusted for the CPU maximal
efficiency to mitigate high time consumption processes in
between the GAN training algorithm.

The type of the weights is a numpy float64, a type of
64 bit precision. The general representation within the given
endianness of a binary word includes the first bit standing
for signedness, the next evelen for exponent’s power and
the rest for the mantissa factor [38]. The vast number of
weights (mutation candidates) can be costly in terms of CPU
calculations and an efficient, specific masking strategy for
mutation has to be arranged. When the bits is masked, no
mutation is taking place. Usually the mutation likelihood of
each bit ranges from 0.01% to 5% what is also described later
in this Section, so the vast majority of the bits should always
be masked. Additionally, the exponent’s bit word is always
masked unless the optional exponent mutation is allowed.
However, given the nature of the non-linear exponent factor,
no particular advantage is achieved, while the memory cost of
the mutation process would be higher by 33%. The signedness
bit is always masked. For the maximal CPU efficiency, it
was decided to use following masking strategy. The masks
are stored in three 16-bit types (unsigned integers) after each
bit’s value is rolled. This gives the coverage of 48 bits of the
mantissa and remaining 3 least significant bits never classified
for the mutations.

In generating mutations, two main approaches can be used
to create new populations: binary and floating-point coding.
Nowadays, the latter one is more preferable, but in our research
we have chosen the binary way. To begin with, we generate the
mutation mask, where 0 means ”leave the bit unchanged” and
1 – ”swap the bit”. Creating those masks bit by bit can become
very time consuming and create a bottleneck of our model, so

we use another algorithm. Assuming that p is the probability
of the single bit to be changed, we calculate the probabilities
for the chunks with a certain number of bits nb. For example
if p = 0.2 and nb = 4 the chance that only second bit in that
chunk changes is 0.21 · 0.83 = 10.24%. We can match this
probability to the following binary number 4(10) = 0100(2),
which represents a part of our mutation mask. Following that,
we can calculate such a chance for each possible chunk and
randomly choose chunks instead of single bits. To create the
mutation mask, we only have to concatenate those chunks by
multiplying each chunk by 2k and adding them all up. Here
k stands for the number of bits the particular chunk has to be
shifted to the left. For example, if we have sampled two chunks
4(10) = 0100(2) and 9(10) = 1001(2) in order to generate 8
bit mask like this one: 0100 1001, we multiply the first chunk
by 24 = 16 and add the result to the second chunk: 16(10) ·
4(10) + 9(10) = 73(10) = 0100 1001(2).

Finally, we apply the resulting mutation mask over the
original number represented in the IEEE 754 double-precision
binary floating-point format using exclusive OR logical oper-
ator (XOR):

mutationi = maski ⊕ original value

The aforementioned approach improves time complexity
by 150 times on arrays with 500K numbers. To maximize
the use of commonly available AVX extensions in modern
CPUs, everything is implemented in the vectorized form giving
another ten times improvement on the same dataset, making
the algorithm 1500 times faster than its basic version.

At the studies the mutation setup was tested with various cri-
teria, e.g. the optimal mutation frequency, which is the number
of training epochs after mutation can happen. Optionally after
each epoch a mutation is directed with a certain probability.
When the mutation is announced, the weights are extracted
from the GAN into a CPU part of code that further executes
the mutation algorithm. For each float in the weight vectors,



a probability check is followed by the qualification into a
mutation. When positive, three 16-bit mask words are built.
The factor classifying the weight to mutate was checked in the
range of 5 - 20%, while the mutation likelihood for a single
bit was 0.001 - 5%. It was also studied whether the floating
likelihood, such like the increasing ratio of overall mutated
weights affect the results, what is shown and described in
Section IV.

While the cross-over was neglected as its role overlaps with
the gradient descent already existing in the GAN training,
the selection process is more troublesome to tackle as the
population is always obtained from one particular weights set
after a bitwise mutation. Although the multiplication factor
ε mostly leads to the unique solution, at least at the low
significant bits range, the selection process assumes that the
parents to the solutions also come from the older selection,
which is not true in this specific case. One can consider the
single selection step an initial arrangement of the vectors,
which would rather mimic the other mutation approach instead
than play its optimization role. Therefore a multiple step
selection was implemented with the generator fitness check
each the new population is generated. The weights obtained in
the youngest generation have the priority to replace the GAN
weights, in case the population have no suitable solutions,
the parent population is checked instead. When neither the
final population nor the parent population were able to yield
the candidate, the GAN is instructed to train its usual way
ahead. The impact of the evolutional behavior of generator’s
weights has to be kept relatively low to avoid the generator out-
performing the discriminator, disturbing the training process.
The methods described above have a medium impact on the
computational time of algorithm’s execution. The calculation
cost of the three-fold differential optimization will eventually
depend on the mutation frequency and the number of weights
in vectors to optimize. For instance, 1.5 million weights and
the mutation procedure after every 200 batches of 32 samples
consumes around 50% more memory.

The weights quality is evaluated using the current discrim-
inator state in similar way to the general generator feedback
when its loss function is calculated. As already mentioned,
the fitness function cannot be straightly constructed because of
the subjective generator output, the condition of the generator
can be measured indirectly. Plenty of methods are available,
in this particular research the discriminator check was used.
Provided the discriminator trains with the relative same pace
to the generator, it can tell the prediction that should be
less accurate for the slightly improved generator. Since the
mutation frequency is usually not higher than one after 200
batches, it does not deregulate the generator and discriminator
performance. The expected result of the studies is to prevent
the generator from stacking in the local minima, that would
manifest in approaching the satisfactionary results faster than
before. The entire code of the project is available on github
in one of the authors’ repository (cite).

III. THE NETWORK SETUP

IV. RESULTS

The variants described in previous Section were tested and
their impact on the overall GAN performance investigated. The
first entity to study was the generic impact of the mutation
probability p to the generator behavior, including the zero
probability p = 0. The mutation was repeated 50 times to
generate 50 different sets of weights. For each weight set the
generator performance was evaluated using the current state
of the discriminator.

Regardless the mutation likelihood, the single mutated set
before selection was usually able to generate a better solution,
which statistically reduced the gan loss function by 10% on
average. It was improved to around 20% on average with the
three-fold selection on top of the mutation. The first tested
probability of the mutation likelihood p = 0.05 was providing
better results for 20 epochs (each epoch of 1024 batches of
32 images). This value of p was very high, as for 48 bits in
each weight the overall probability that at least mutation will
take place is 91.4% for each weight. The vector of weights
is mostly changed and the solution can be far away from
the actual initial position. During first 20 epochs GAN was
trained enough that none from 50 highly mutated vectors
was able to pass. As over the training, the generator weights
are moving closer towards their final positions, the floating
p value was proposed. The chance of each bit to mutate
was inversely proportional to the epoch number. The formula
was adjusted to be p = 0.05 for the initial value and move
towards p = 0.00001 value when GAN reaches the farthest
epochs. In this approach the mutation was almost always able
to deliver the better weights set to a generator, even at the
final training stages. The mutation itself leads to only minor
improvements in the results. The generated digits are moving
just a little bit faster towards the final state, what can be caused
by the fact that the mutation process actually evaluates the
discriminator loss on the generated data and thus it can count
as an optimization step. With the selection added,

V. CONCLUSION

The evolutionary in terms of the mutation and a selection
was studied for various approaches of a bitwise mutation,
with various conditions investigated and the impact on the
results and the overall GAN performance was measured. The
whole process was optimized in terms of GPU and CPU
efficiency, for models on PyTorch and Keras. In particular,
the CPU calculations was modified by around 10 times to the
standard mutation approach. The impact on the results was
also checked. It was found that a mutation operation in a
specific setup can improve the GAN results in terms of faster
training and generating a higher amount of digits in better
quality. However, the new version of GAN was not better in
terms of generating the bad quaity results. This might be a
footprint of mutation to have the GAN better performing for
specific set of noise. Concluding, the GAN behaved better for
image improvement but did not improved the bad generated



Fig. 2. Mutation strategy for CPU efficiency.

Fig. 3. Digits comparison for the original GAN (on top) and the GAN with
mutations diminishing over time (on bottom) in Keras.

Fig. 4. Digits comparison for the original GAN (on top) and the GAN with
mutations diminishing over time (on bottom) in PyTorch.

Fig. 5. Discriminator accuraccy for four different bitwise mutation likelihood,
A: p = 0 (no mutations); B: p = 0.0001; C: p = 0.0005; D: p = 0.001.

figures. Perhaps the idea behind the studies is more valuable
and one should investigate various hybrid improvements for
the generator training improving the badly generated samples
with no significant impact on the CPU/GPU computational
cost.

ACKNOWLEDGMENT

We acknowledge support from the Polish National Science
Centre NCN (UMO-2020/37/N/ST2/04008).

REFERENCES

[1] I. Goodfellow et al. , Generative adversarial nets, Advances in Neural
Information Processing Systems, 2014, pp. 2672 - 2680

[2] Z. Wang et al. , Generative Adversarial Networks in Computer Vision: A
Survey and Taxonomy, ACM Computing Surveys, 2021, Vol. 54 Is. 2

[3] Z. Pan et al. , Recent Progress on Generative Adversarial Networks
(GANs): A Survey, IEEE Access, 2019, Vol. 7

[4] A. Aggarwal , Generative adversarial network: An overview of theory
and applications, International Journal of Information Management, 2021,
Vol. 1

[5] J. H. Holland , Adaptation in Natural and Artificial Systems, The
University of Michigan Press, 1795

[6] A. Lambora, K. Gupta, K. Chopra , Genetic Algorithm - A Literature
Review, 2019 International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COMITCon), 2019, pp. 380-384

[7] D. J. Montana, L. Davis , Training feedforward neural networks using
genetic algorithms, IJCAI’89: Proceedings of the 11th international joint
conference on Artificial Intelligence, 1989, Vol. 1, pp. 762-767

[8] R. S. Sexton, R. E. Dorsey, J. D. Johnson , Toward global optimization of
neural networks: A comparison of the genetic algorithm and backpropa-
gation, Decision Support Systems, 1998, Vol. 22, Is. 2, pp. 171-185

[9] J. N. D. Gupta, R. S. Sexton , Comparing backpropagation with a generic
algorithm for neural network training, Omega, 1999, Vol. 27, Is. 6, pp.
679-684

[10] H. Huang, J. Li, C. Xiao , A proposed iteration optimization approach
integrating backpropagation neural network with genetic algorithm, Ex-
pert Systems with Applications, 2015, Vol. 42, Is. 1, pp. 146-155

[11] Haviluddin, R. Alfred , A genetic-based backpropagation neural network
for forecasting in time-series data, 2015 International Conference on
Science in Information Technology, 2015, pp. 158-163

[12] J. Gill, B. Singh, S. Singh , Training back propagation neural networks
with genetic algorithm for weather forecasting, IEEE 8th International
Symposium on Intelligent Systems and Informatics, 2010

[13] C. Chandre Gowda, S. G. Mayya , Comparison of Back Propagation
Neural Network and Genetic Algorithm Neural Network for Stream Flow
Prediction, Journal of Computational Environmental Sciences, 2014

[14] F. Yin, H. Mao, L. Hua , A hybrid of back propagation neural network
and genetic algorithm for optimization of injection molding process
parameters, Materials Design, 2011, Vol. 32, Is. 6, pp. 3457-3464

[15] M. Hu , Optimizing Back Propagation Neural Network with Genetic
Algorithm for Man-hour Prediction in Chemical Equipment Design,
Chemical Engineering Transactions, 2018, Vol. 66, pp. 877-882

[16] X. Yang , Nature-Inspired Optimization Algorithms, 2014 (1st edition),
2020 (2nd edition)

[17] X. Yang , Nature-Inspired Algorithms and Applied Optimization, 2018
[18] R. Storn, K. Price , Differential Evolution - A Simple and Efficient

Heuristic for global Optimization over Continuous Spaces, Journal of
Global Optimization, 1997, Vol. 11, pp. 341 - 359

[19] R. Storn , On the usage of differential evolution for function optimization,
Proceedings of North American Fuzzy Information Processing, 1996

[20] Bilal et al. , Differential Evolution: A review of more than two decades of
research, Engineering Applications of Artificial Intelligence, 2020, Vol.
90

[21] S. Hassan. et al. , Multi-variant differential evolution algorithm for
feature selection, Scientific Reports, 2020, Vol. 90

[22] M. A. Bakar et al. , A Customized Differential Evolutionary Algorithm
for Bounded Constrained Optimization Problems, Complexity, 2021, Vol.
2021

[23] X. Zhong, P. Cheng , An Improved Differential Evolution Algorithm
Based on Dual-Strategy, Mathematical Problems in Engineering, 2020,
Vol. 2020



[24] V. Kachitvichyanukul, Comparison of Three Evolutionary Algorithms:
GA, PSO, and DE, Industrial Engineering and Management System, 2012,
Vol. 11, pp. 215-223

[25] U. Mlakar et al. , Multi-Objective Differential Evolution for feature
selection in Facial Expression Recognition systems, Expert Systems with
Applications, 2017, Vol. 89, pp. 129-137

[26] C. Wang et al. , Evolutionary Generative Adversarial Networks, IEEE
Transactions on Evolutionary Computation, 2019, Vol. 23, pp. 921-934

[27] J. Toutouh et al. , Spatial evolutionary generative adversarial networks,
Proceedings of the 2020 Genetic and Evolutionary Computation Confer-
ence Companion, 2020, pp. 1824-1831

[28] V. F. Costa et al. , Neuroevolution of Generative Adversarial Networks,
Deep Neural Evolution, 2020, pp. 293-322

[29] M. Baioletti et al. , Multi-objective evolutionary GAN, Deep Neural
Evolution, 2020, pp. 293-322

[30] C. He et al. , Evolutionary Multiobjective Optimization Driven by Gen-
erative Adversarial Networks (GANs), IEEE Transactions on Cybernetics,
2021, Vol. 51, no. 6, pp. 3129-3142

[31] S. Katoch, S. S. Chauhan, V. Kumar , A review on genetic algorithm:
past, present and future, Multimedia Tools and Applications, 2020, Vol.
80, pp. 8091-8126

[32] K. Opara, J. Arabas , Comparison of mutation strategies in Differential
Evolution - A probabilistic perspective, Swarm and Evolutionary Com-
putation, 2018, pp. 53-69

[33] R. Mallipeddi et al. , Differential evolution algorithm with ensemble of
parameters and mutation strategies, Applied Soft Computing, 2011, Vol.
11, Is. 2, pp. 1679-1696

[34] X. Zhong, M. Duan, P. Cheng , Ranking-based hierarchical random
mutation in differential evolution, PLOS ONE, 2021, Vol. 16

[35] M. Leon, N. Xiong , Investigation of Mutation Strategies in Differential
Evolution for Solving Global Optimization Problems, Artificial Intelli-
gence and Soft Computing, 2014, pp. 372-383

[36] T. Wang et al. , Adaptive Dynamic Disturbance Strategy for Differential
Evolution Algorithm, MDPI Applied Science, 2020

[37] C. Lu, S. Chiu, C. Hsu, S. Yen , Enhanced Differential Evolution Based
on Adaptive Mutation and Wrapper Local Search Strategies for Global
Optimization Problems, Journal of Applied Research and Technology
JART, 2014, Vol. 12, Is. 6, pp. 1131-1143

[38] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, 2008,
Vol. 12, Is. 6, pp. 1-70


