

USING COCOTB AS A VERIFICATION FRAMEWORK FOR HDL DESIGNS

Magdalena Król Supervisor: Maciej Kopeć

Introduction

What is the project about

What were my tasks

FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term "field-programmable".

https://pl.mouser.com/images/marketingid/2019/img/148373317.png?v=022321.0507

Cocotb

cocotb is an open-source COroutine-based COsimuation TestBench (hence the name) environment, developed for the verification of hardware description languages like VHDL, Verilog and SystemVerilog, by means of Python programming language in the field of electronic design automation (FDA)

			· ·/·		
680.00ns INFO	cocotb.xfcp_mod_reg.up_xfcp_in	axis.py:502 in _run			
952.00ns INFO	cocotb.xfcp_mod_reg.up_xfcp_in	axis.py:502 in _run			
1216.00ns INFO	cocotb.xfcp_mod_reg.up_xfcp_in	axis.py:502 in _run			
1472.00ns INFO	cocotb.xfcp_mod_reg.up_xfcp_in	axis.py:502 in _run			
1720.00ns INFO	<pre>cocotb.xfcp_mod_reg.up_xfcp_in</pre>	axis.py:502 in _run			
1960.00ns INFO	cocotb.xfcp mod reg.up xfcp in	axis.pv:502 in run			
	<pre>xeel\xdf\x9b\xe7\xbe0&\x02'). tkeep=None. t</pre>	id=None, tdest=None, tuser=None, sim time start=196000			
2192.00ns INFO	cocotb.xfcp mod reg.up xfcp in	axis.pv:502 in run			
30\x00\x00\x00\x00\x	d3xf8x80xa7x13xe7 xfa'), tkeen=None.	tid=None. tdest=None. tuser=None. sim time start=2192			
2416-00ns TNEO	cocoth xfcn mod reg up xfcn in	axis pv:502 in run			
\x00\x00\x00\x00\x00	<pre>\xce09\xdf\xe5\xa2') tkeen=None tid=None</pre>	tdest=None_tuser=None_sim_time_start=2416000_sim			
2632 00ns TNEO	cocoth vfcn mod reg up vfcn in	avic nv:502 in nun			
	.) vh0% \vdd') tkeen-None tid-None tdest	-None tusen-None sim time stant-2622000 sim time en			
2940 00pc TNEO	cocoth vfcn mod nog up vfcn in	avis pw:502 in pup			
2840.0015 10F0	(c) (u) theory None tid None tdest None	axis.py.302 in _run			
	cosoth wfor mod nog up wfor in	c, cuser=wone, sim_cime_scarc=zo40000, sim_cime_end=won			
3040.00015 INFO	cococo.xtcp_mod_reg.up_xtcp_m	axis.py.302 in _run			
	<pre>(cc\xa3\x19\x9d), tkeep=wone, t1d=wone, t0</pre>	lest=None, tuser=None, sim_time_start=3040000, sim_time			
3232.00ns INFO	cocotb.x+cp_mod_reg.up_x+cp_in	axis.py:502 in _run			
\x00\x00\x00\x00\x+6	<pre>>\x98"'), tkeep=None, tid=None, tdest=None,</pre>	tuser=None, sim_time_start=3232000, sim_time_end=None			
3416.00ns INFO	cocotb.xtcp_mod_reg.up_xtcp_in	axis.py:502 in _run			
3592.00ns INFO	cocotb.xfcp_mod_reg.up_xfcp_in	axis.py:502 in _run			
/mnt/c/Users/krolm/[Desktop/ss/cocotb/test_xfcp.py:86: FutureWa	arning: `str(ModifiableObject)` is deprecated, and in f	uture will return `Modif:	iableObjectpath`. To get a stri	ng representation of the valu
<pre>tr(ModifiableObject.</pre>	value)`.				
a = bitarray.bitar	rray(str(dut.rw_regs))				
o'V\x85\xf6\xcc\xc3	<pre>x1e\x0e\xd3\xee(=\xcc0\xb4u\xa9'</pre>				
3832.00ns INFO	cocotb.regression	regression.py:364 in _score_test			
3832.00ns INFO	cocotb.regression	regression.py:487 in _log_test_summary			
3832.00ns INFO	cocotb.regression	regression.py:557 in _log_test_summary			
3832 00ns TNEO	cocoth regression	regression pv:574 in log sim summary			
3032100113 1110	00000110610000	regression.pyrs/+ in _rog_sim_summery			

regression.nv:259 in tear down

3832.00ns TNF0

cocoth.regression

(tdata=bytearray(b'\xff2\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00
(tdata=bytearray(b'\xff2\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00
(tdata=bytearray(b'\xff2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0
ableObjectpath`. To get a string representation of the value, use `s


```
🔹 test_xfcp.py > 🛇 xfcp_prep
 1 import bitarray
     import math
     import os
     import random as rnd
 4
     from collections import Counter
 5
 6 from typing import Dict, List, Any
 7 from cocotbext.axi import AxiStreamFrame, AxiStreamBus, AxiStreamSource, AxiStreamSink, AxiStreamMoni
 8 import cocotb
 9 from cocotb.binary import BinaryValue
10 from cocotb.clock import Clock
11 from cocotb.triggers import RisingEdge, FallingEdge
12 from cocotb.queue import Queue
13 from cocotb.handle import SimHandleBase
14 from cocotb.triggers import Event
15 from dose3d_daq.xfcp_ext import reg_packet
18 @cocotb.test()
19 async def xfcp_prep(dut):
         #wygenerowanie clocka:
         clock = Clock(dut.clk, 8, units="ns") # Create a 10us period clock on port clk
         cocotb.fork(clock.start()) # Start the clock
24
25
         await FallingEdge(dut.clk)
         dut.rst <= 1
         dut.rw set <= 0
         dut.rw_rst <= 0
         for _ in range(3):
             await RisingEdge(dut.clk)
         dut.rst<= 0
34
35
         source = AxiStreamSource(AxiStreamBus.from_prefix(dut, "up_xfcp_in"), dut.clk, dut.rst)
         for _ in range(10):
             await RisingEdge(dut.clk)
```

	. 1895
	Strategy and Advertising and and a
	Ref 1
	The Waynesse
	The second secon
	· eggenter
tor	
	Manager and Area

test_xfcp.py > 🛇 xfcp_prep

36	for _ in range(10):
37	await RisingEdge(dut.clk)
38	
39	
40	
41	
42	for i in range(16):
43	<pre>pkt = reg_packet.WriteRegisterRequest()</pre>
44	<pre>pkt.data = bytearray([rnd.randint(0, 255) for _ in range(16 - i)])</pre>
45	<pre>pkt.offset = i</pre>
46	<pre>test_data = pkt.build()</pre>
47	<pre>test_frame = AxiStreamFrame(test_data, tx_complete=Event())</pre>
48	await source.send(test_frame)
49	<pre>await test_frame.tx_complete.wait()</pre>
50	await RisingEdge(dut.clk)
51	await RisingEdge(dut.clk)
52	
53	#print(pkt.data)
54	<pre>#print(pkt.offset)</pre>
55	<pre>#print(dut.rw_regs.value.binstr)</pre>
56	s=dut.rw_regs.value.binstr
57	check = bytearray()
58	for a in range(16):
59	c= s[a*8:(a+1)*8]
60	n= int(c, 2)
61	check.append(n)
62	check=check[::-1]
63	<pre>#print(check)</pre>
64	assert pkt.data==check[pkt.offset:
65	
66	
67	it pkt.data==test_data:
68	assert True
69	
70	for _ in range(10):
71	await RisingEdge(dut.clk)
72	

File	File Edit Search Time Markers View Help							
× (۹ ا 🗋	\oplus		혓 候 🐳 🗢 🖨 From: 🛛) se	ec To: 3704001 ps 🛛 🕄	Marker: 468900 ps Cursor: 533100 ps	
C:\Use	rs\krolm\Deskto	op\ss\co	cotb\	\dump.vcd C:\Users\krolm\Desktop\	ss\	\cocotb\dump.vcd C:\Users\krolm\De	esktop\ss\cocotb\dump.vcd C:\Users\krolm\c	ocotb\examples\a
				Signals		Waves		
L	xfcp_mod_reg			Time			0 ns 300	ns
				clk=0				
				130-0				
				up_xfcp_in_tdata[7:0]=01	1	32 00 01 00	48 B6 D7 AD E8 D	F2 56 2F 2B
				up_xfcp_in_tlast=0				
				up_xfcp_in_tready=1				
				up xfcp in tvalid=1				
J								
Туре	Signals	[1					
тед	regs_reau_p	u_reg_i		up_xfcp_out_tdata[7:0] =00	0	00		
wire	regs_reserve	ed[63:0]		up_xfcp_out_tlast=0				
reg	regs_write_p	otr_reg[up xfcp out tuser=0				
reg	regs_write_p	otr_reg_		up_xfcp_out_tvalid=0				
wire	ro_regs[15:0	0]	1		1			
reg	ro_regs_free	ze						
reg	ro_regs_reg[[15:0]		rw_regs[127:0] =A0	0	000000000000000000000000000000000000000	000 /0+/0+/0+/0+/0+/0+	<u>+ /0+ /0+ /0+ /0+ /0+ /0+</u>
wire	rst							
wire	rw_regs[127	':0]						
reg	rw_regs_reg	[127:0]						
reg	rw_regs_reg	_next[1						
wire	rw_rst[127:0	0]						
wire	rw_set[127:0	0]						
reg	rx_state_nex	đ[3:0]	-					
4		P						
Filter:								
Appe	nd Insert	Replace						
1	d				1			

The end. Thank you for your attention