Tau pair production in ultraperipheral collisions of lead ions with the ATLAS detector

Anna Paliga, Stefan Horodeński supervisor: Mateusz Dyndal

Outline:

- Introduction:
 - Ultraperipheral collisions
 - Tau decay
- Signal and background process
- First validation plots
- System variables, application of the TLorentzVector + plots
- System cut of the transverse momentum
- Summary

Introduction - ultraperipheral collisions

- Boosted charged-particles (Pb ions) can be intense source of photons
- This can give rise to photon-photon interactions at the LHC
- It is possible to produce tau pairs via photon-photon fusion

Introduction - tau decays

- The branching fractions of the dominant tau decays are:
 - \circ 17.8% for decay into a tau neutrino, electron and electron antineutrino;
 - \circ 17.4% for decay into a tau neutrino, muon, and muon antineutrino.
 - 25.4% for decay into a charged pion, a neutral pion, and a tau neutrino;
 - \circ 10.8% for decay into a charged pion and a tau neutrino;
 - \circ 9.3% for decay into a charged pion, two neutral pions, and a tau neutrino;
 - \circ 9.0% for decay into three charged pions and a tau neutrino;
- In this exercise we focus on tau decays into muon+neutrinos (first tau) and into a final state with one charged particle+neutrino(s)+neutral pion(s) (second tau)
 - Charged particle = pion or electron or muon
 - Neutrinos escape detection thus we only measure
 1 muon and 1 extra charged-particle in the detector

Signal and background processes

- We analyzed simulated MC samples with full simulation of ATLAS detector response
 - Signal sample: **yy->tau+tau- (->muon+1track)** process
 - Background sample yy->muon+muon- process (similar final state)
- Samples are normalised using per-event weights (event_weight variable)
 - N = sigma * L

First validation plots

- Comparison of kinematic variables for signal and background (muon variables)
 - All distributions are normalized to unity

First validation plots

- Comparison of kinematic variables for signal and background (track variables)
 - All distributions are normalized to unity

muon+track system variables

- We use TLorentzVector objects to calculate:
 - muon+track system transverse momentum (system pT)
 - muon+track system invariant mass (system M)

```
Long64_t nentries = t1->GetEntries();
Float_t m_muon = 0.105658, m_track = 0.139570; // GeV
```

```
for (Long64_t i=0; i<nentries; i++) {
    t1->GetEntry(i);
    vector4_muon.SetPtEtaPhiM(muon_pt, muon_eta, muon_phi, m_muon);
    vector4_track.SetPtEtaPhiM(track_pt, track_eta, track_phi, m_track);
```

```
vector4_sum = vector4_muon + vector4_track;
hvector_pt -> Fill(vector4_sum.Pt(), event_weight);
hvector_m -> Fill(vector4_sum.M(), event_weight);
```

muon+track system variables

• We observe significant difference in the shape of system pT distribution between the signal and background

Adding system pT > 1 GeV cut

- To increase S/B we decided to apply a system pT > 1 GeV requirement
 - This cut reduces signal by 7.44% but reduces the background by 68.34%.

Data set	Before cut	After cut	Percentage reduction
Signal	501.321930	464.002936	7.44%
Background	742.292585	235.034797	68.34%

Summary

- In a certain conditions particles can be created due to interaction of the strong EM field of Pb ions, instead of direct (head-on) collision
- Studied are simulated events with exclusive tau pair production
- Adding a cut on the system transverse momentum (> 1 GeV) enables to increase signal to background ratio
 - TLorentzVector class is very useful in calculating two-particle system kinematic variables