The baryon content of the π^{\pm}

Pablo Sanchez-Puertas psanchez@ifae.es

Instituto de Fisica d'Altes Enrgies (IFAE) Barcelona Institute of Science and Technology (BIST) Barcelona, Spain

Based on arXiv:2103.09131, in Coll. with W. Broniowski & E. Ruiz Arriola

Seminarium HEP Bialasowka, 11th June 2021

Section 1

Spoiler

The baryon content of the π^{\pm} Spoiler

___ Spoiler _

• Our final result; recall $\pi^+ \sim u ar{d}$ and $\pi^- \sim d ar{u}$

- Matter antimatter (u/d quarks) differently distributed inside the π^\pm
- Admits mechanistic interpretation $(m_d > m_u)$

__ Outline __

- Why form factors? The essentials
- The baryon form factor and symmetries
- Model estimates for the baryon form factor
- Extraction from experimental data
- Further discussions
- Conclusions

The baryon content of the π^{\pm} Why form factors? The essentials

Section 2

Why form factors? The essentials

___ How do we probe charge distributions? ____

Recall that, in QCD

$$\partial_{\mu}\left[ar{q}_{a}(x)\gamma^{\mu}q_{b}(x)
ight]=i(m_{a}-m_{b})ar{q}_{a}(x)q_{b}(x)=0 ext{ for } a=b$$

• Implies conserved charge and $j_a^0(x) \sim$ charge density operator

$$Q_{a} = \int d^{3}x \, j_{a}^{0}(x) \sim \int d^{3}x \, \rho_{a}(x) = \text{const.} \quad \text{where } j_{a}^{\mu}(x) = \bar{q}_{a}(x) \gamma^{\mu} q_{a}(x) \text{ (FNC)}$$

• So the following matrix element contains information on charge distribution

$$\langle \pi^+(p+q) | \, j^\mu_a(x) \, | \pi^+(p)
angle = e^{iq\cdot x} \, \langle \pi^+(p+q) | \, j^\mu_a(0) \, | \pi^+(p)
angle$$

• Indeed, all the structure is encoded in the matrix element

$$\langle \pi^+(p+q)|j^\mu_a(0)|\pi^+(p)
angle$$

...that precisely defines the form factor of interest...

___ Form factors 101: definitions ___

• Form factors are on-shell matrix elements

$$\label{eq:alpha} \begin{split} \langle \pi^+(p+q)|\,j_a^\mu(0)\,|\pi^+(p)\rangle &= (2p+q)^\mu F_a(q^2)\\ \text{current is conserved: } \partial_\mu j_a^\mu &= 0 \text{ since } q\cdot(2p+q) = m_\pi^2 - m_\pi^2 = 0 \end{split}$$

- Back to charge dist., if wavefunction: $\Psi_u \ket{u} \otimes \Psi_d \ket{ar{d}} + ...$, we want

$$ho_{a}(x)=raket{\Psi_{\pi}|\hat{
ho}_{a}(x)|\Psi_{\pi}
angle=raket{\Psi_{\pi}|j^{0}_{a}(x)|\Psi_{\pi}
angle=...=\intrac{d^{3}q}{(2\pi)^{3}}e^{iec{q}\cdotec{x}}F_{a}(-ec{q}ec{q}ec{^{2}})$$

Form factors are fourier-transforms of charge distributions!

•
$$\langle r^2 \rangle_a = \int d^3 r \ r^2 \rho_a(r) = ... = 6 \frac{dF_a(q^2)}{dq^2}|_{q^2=0}$$

$$F_a(q^2) = Q_a(1 + \frac{1}{6} \langle r^2 \rangle_a q^2 + ...)$$

___ But again, how do we probe charge distributions?

• We know the (basic) theory now, but how to extract them?

- Carrying these experiments for years with QED! Hofstadter Nobel Prize '61
- Good knowledge for $F_Q(q^2)$, but not accessible probes for $F_a(q^2)$ for $q \neq Q$
- It will require more work for the baryon form factor... let's dive in!

The baryon content of the π^{\pm} The baryon form factor and symmetries

Section 3

The baryon form factor and symmetries

___ Form factors 102: symmetries and the baryon form factor ___

• The relevant—conserved—currents in our study (associated charge $Q_{B,3,Q}$)

$$J^{\mu}_{B} = \frac{1}{N_{c}} \left(\bar{u} \gamma^{\mu} u + \bar{d} \gamma^{\mu} d \right), \quad J^{\mu}_{3} = \frac{1}{2} \left(\bar{u} \gamma^{\mu} u - \bar{d} \gamma^{\mu} d \right), \quad J^{\mu}_{Q} = J^{\mu}_{3} + \frac{1}{2} J^{\mu}_{B}$$

- The relevant form factors $(\partial_{\mu} J_{X}^{\mu} = 0)$ $\langle \pi^{a}(p+q) \mid J_{B,3,Q}^{\mu}(0) \mid \pi^{a}(p) \rangle = (2p^{\mu} + q^{\mu})F_{B,3,Q}^{a}(q^{2}) \qquad a = \{0, \pm\}$
- Charge conjugation (exact) $Cj_X^{\mu}C^{\dagger} = -j_X^{\mu}, C |\pi^{\pm}\rangle = |\pi^{\mp}\rangle, C |\pi^{0}\rangle = |\pi^{0}\rangle$ $F_X^0(q^2) = -F_X^0(q^2) = 0 \quad \& \quad F_X^{\pm}(q^2) = -F_X^{\mp}(q^2) \quad (\text{opposite charge})$

• G-parity $\mathcal{G} = \mathcal{C}e^{i\pi l_2}$ (exact in isospin-symmetric limit $m_u = m_d$) $\mathcal{G}j_B^{\mu}\mathcal{G}^{\dagger} = -j_B^{\mu}, \quad \mathcal{G}j_3^{\mu}\mathcal{G}^{\dagger} = +j_3^{\mu}, \quad \mathcal{G} |\pi^{\pm}\rangle = -|\pi^{\pm}\rangle, \quad \mathcal{G} |\pi^{0}\rangle = -|\pi^{0}\rangle$ $F_B^{\pm}(q^2) = -F_B^{\pm}(q^2) = 0$

But, in real world $m_u \neq m_d$ so in general $F_B^{\pm} \neq 0!$

____ The baryon form factor: final messages

- But isospin is broken! (Davies et al. 2009) $\Delta m = m_d m_u = 2.8(2) \text{ MeV}, m_u = 2.01(14) \text{ MeV}, m_d = 4.79(16) \text{ MeV}$
- While ward ids. still require $F_B^{\pm}(0) = 0$ (baryonless), $F_B^{\pm}(q^2)$ not protected

And in QFT, if no symmetry protection, things are generally nonzero!

____ The baryon form factor: final messages

- But isospin is broken! (Davies et al. 2009) $\Delta m = m_d m_u = 2.8(2) \text{ MeV}, m_u = 2.01(14) \text{ MeV}, m_d = 4.79(16) \text{ MeV}$
- While ward ids. still require $F_B^{\pm}(0) = 0$ (baryonless), $F_B^{\pm}(q^2)$ not protected

Compilation from Obrecht (2019)

____ The baryon form factor: final messages

- But isospin is broken! (Davies et al. 2009) $\Delta m = m_d m_u = 2.8(2) \text{ MeV}, m_u = 2.01(14) \text{ MeV}, m_d = 4.79(16) \text{ MeV}$
- While ward ids. still require $F_B^{\pm}(0) = 0$ (baryonless), $F_B^{\pm}(q^2)$ not protected

Alexandrou et. al (ETM Coll.) PRD101 (2020)

____ The baryon form factor: final messages .

- But isospin is broken! (Davies et al. 2009) $\Delta m = m_d - m_u = 2.8(2) \text{ MeV}, m_u = 2.01(14) \text{ MeV}, m_d = 4.79(16) \text{ MeV}$
- While ward ids. still require $F_B^{\pm}(0) = 0$ (baryonless), $F_B^{\pm}(q^2)$ not protected

$$F_B^{\pm}(q^2)???$$

 $F_B^{\pm}(0) = 0 \Rightarrow F_B(q^2)^{\pm} = \pm \left[\frac{1}{6} \langle r_B^2 \rangle q^2 + \mathcal{O}(q^4)\right]$

- Must scale as Δm (tiny & challenging!)
- No baryonic currents = no direct access ⇒ more work required!
- In the following extract $\langle r_B^2 \rangle$! First th. estimates, then exp

Section 4

Model estimates for the baryon form factor

___ Model I: Effective Lagrangian

• Let's start with an order of magnitude estimate based on dim arguments!

$$J^{\mu}_{\mathcal{B}} = -2i\frac{c\Delta m}{\Lambda^{3}}\partial_{\nu}\left(\partial^{\mu}\pi^{+}\partial^{\nu}\pi^{-} - \partial^{\nu}\pi^{+}\partial^{\mu}\pi^{-}\right) + \dots,$$

- Essentially the same as χPT would provide
- This implies

$$F_B^{\pm}(q^2) = \pm rac{c\Delta m}{\Lambda^3} q^2 + \mathcal{O}(q^4) \Rightarrow \langle r^2 \rangle_B^{\pi^{\pm}} = \pm 6 rac{c\Delta m}{\Lambda^3}$$

• As an estimate, typically $\Lambda \simeq m_
ho \Rightarrow \langle r^2
angle_B^{\pi^\pm} = \pm 6 rac{c\Delta m}{m_
ho^3} = c (0.04 \ {
m fm})^2$

- We expect c to be an order 1 parameter, while sign not settled (yet)
- To be compared with $\langle r^2 \rangle_Q^{\pi} = (0.659(4) \text{ fm})^2$

__ Model II: Yukawa model

• This model allows direct "contact" with quarks

•
$$ho_B(r) = B_u |\Psi_u(\vec{x})|^2 + B_{\bar{d}} |\Psi_{\bar{d}}(\vec{x})|^2$$

- Yukawa distributions $\Psi_q(r) = rac{M_q^2 e^{-2M_q r}}{\pi r}$ with $M_{u,d} = M rac{1}{2}\Delta m$
- For $\Delta m=0$: $F_Q^{\pi^\pm}(Q^2)=\pmrac{4M^2}{4M^2+Q^2}$ with $2M\simeq m_
 ho
 ightarrow {
 m VMD}$

$$F_B^{\pi^+}(-Q^2) = \frac{1}{N_c} \left[\frac{4M_u^2}{4M_u^2 + Q^2} - \frac{4M_d^2}{4M_d^2 + Q^2} \right] = \frac{1}{N_c} \frac{8M\Delta mQ^2}{(4M_u^2 + Q^2)(4M_d^2 + Q^2)}$$

• We obtain $\langle r^2
angle_B^{\pi^\pm} \simeq \pm 3 \Delta m / (N_c M^3) = \pm (0.04~{
m fm})^2$

Predicts same magnitude, but also the sign!

__ Model II: Yukawa model

• This model allows direct "contact" with quarks

•
$$ho_B(r) = B_u |\Psi_u(\vec{x})|^2 + B_{\bar{d}} |\Psi_{\bar{d}}(\vec{x})|^2$$

- Yukawa distributions $\Psi_q(r) = rac{M_q^2 e^{-2M_q r}}{\pi r}$ with $M_{u,d} = M rac{1}{2}\Delta m$
- For $\Delta m=0$: $F_Q^{\pi^\pm}(Q^2)=\pmrac{4M^2}{4M^2+Q^2}$ with $2M\simeq m_
 ho
 ightarrow {
 m VMD}$

$${\cal F}_B^{\pi^+}(-Q^2) = rac{1}{N_c} \left[rac{4M_u^2}{4M_u^2+Q^2} - rac{4M_d^2}{4M_d^2+Q^2}
ight] \simeq rac{1}{N_c} rac{4m_{
ho,\omega}\Delta mQ^2}{(m_
ho^2+Q^2)(m_\omega^2+Q^2)}$$

• We obtain $\langle r^2
angle_B^{\pi^\pm} \simeq \pm 3 \Delta m / (N_c M^3) = \pm (0.04~{
m fm})^2$

Predicts same magnitude, but also the sign!

The baryon content of the π^{\pm} Model estimates for the baryon form factor

__ Model II: Yukawa model

- Mechanistic intuition heavy/light
- "Weighting" 4% mass differences

__ Model III: Nambu—Jona-Lasinio model

- Better motivated low-energy model of QCD
- Includes chiral symmetry-breaking and constituent quarks $\rightarrow \Delta m!$
- Quite succesful at low energies (long distances)

• One obtains quite independent of regularization

$$\langle r^2 \rangle_B^{\pi^{\pm}} \simeq \pm (0.03 \text{ fm})^2$$

The baryon content of the π^{\pm} Model estimates for the baryon form factor

__ Model IV: $\rho - \omega$ mixing

- So far quark models, move on to hadronic ones for better contact with exp.!
- We follow the idea of VMD, quite successfull in describing $F_Q^{\pm}(Q^2)$

The baryon content of the π^{\pm} Model estimates for the baryon form factor

____ Model IV: $\rho - \omega$ mixing

- So far quark models, move on to hadronic ones for better contact with exp.!
- We follow the idea of VMD, quite successfull in describing $F_Q^{\pm}(Q^2)$

• The states $|\rho^0\rangle = \cos\theta \, |\rho^3\rangle - \sin\theta \, |\omega^0\rangle$, $|\omega\rangle = \sin\theta \, |\rho^3\rangle + \cos\theta \, |\omega^0\rangle$, $\theta \sim \epsilon$

$$F_{3}(-Q^{2}) = \frac{\cos^{2}\theta m_{\rho}^{2}}{Q^{2} + m_{\rho}^{2}} + \frac{\sin^{2}\theta m_{\omega}^{2}}{Q^{2} + m_{\omega}^{2}}, \quad F_{B}(-Q^{2}) = \frac{Q^{2}\sin(2\theta)(m_{\omega}^{2} - m_{\rho}^{2})}{N_{c}(Q^{2} + m_{\rho}^{2})(Q^{2} + m_{\omega}^{2})}$$

• Simplistic model $M^2_{\rho,\omega} \simeq M^2_0 + B\hat{m}, \ M^2_{\phi} \simeq M^2_0 + Bm_s$ $\Rightarrow \sin(2\theta)(m^2_{\omega} - m^2_{\rho}) = -2B\Delta m \& B = 2/3(M^2_{\phi} + M^2_{K^*} - 2M^2_{\rho,\omega})/(m_s - \hat{m})$ $\langle r^2 \rangle_B^{\pi^{\pm}} \simeq \pm (0.05 \text{ fm})^2$ ___ Summary _____

All theoretical models support $\langle r^2 \rangle_B^{\pi^+} \simeq + (0.04 \ {\rm fm})^2$

But, is it possible to extract it (indirectly) from experiment?

. . .

___ Summary _____

All theoretical models support $\langle r^2 \rangle_B^{\pi^+} \simeq + (0.04 \ {\rm fm})^2$

But, is it possible to extract it (indirectly) from experiment?

YES!

. . .

The baryon content of the π^{\pm} Extraction from experimental data

Section 5

Extraction from experimental data

Extraction from experiment

- We have a long tradition of $e^+e^- \to \gamma^* \to \pi^+\pi^-$ measurements!

Extraction from experiment

• We have a long tradition of $e^+e^- o \gamma^* o \pi^+\pi^-$ measurements!

- The form factor decomposes as $F_Q^{\pi^\pm}(q^2) = F_3^{\pi^\pm}(q^2) + rac{1}{2}F_B^{\pi^\pm}(q^2)$

$$F_{3}^{\pi^{\pm}}(q^{2}) = \frac{D_{\rho}(q^{2}) + c_{\rho'}D_{\rho'}(q^{2}) + \dots}{1 + c_{\rho'} + \dots}, \quad F_{B}^{\pi^{\pm}}(q^{2}) = c_{\rho\omega}q^{2}D_{\rho}(q^{2})D_{\omega}(q^{2}) \xrightarrow{q^{2} \to 0} 0$$

$$D_{V}(s) = [m_{V}^{2} - s - im_{V}\Gamma_{V}(t)]^{-1}$$

Extraction from experiment

• We have a long tradition of $e^+e^- o \gamma^* o \pi^+\pi^-$ measurements!

$$F_{3}^{\pi^{\pm}}(q^{2}) = \frac{D_{\rho}(q^{2}) + c_{\rho'}D_{\rho'}(q^{2}) + \dots}{1 + c_{\rho'} + \dots}, \quad F_{B}^{\pi^{\pm}}(q^{2}) = c_{\rho\omega}q^{2}D_{\rho}(q^{2})D_{\omega}(q^{2}) \xrightarrow{q^{2} \to 0} 0$$

 $D_V(s) = [m_V^2 - s - im_V \Gamma_V(t)]^{-1}$ Fit it!

___ Extraction from experiment

- The fits in the timelike region $q^2 > 4 m_{\pi^\pm}^2$
- Can use analytic properties to go to the SL and extract radius

$$F_B^{\pi^{\pm}}(q^2) = \frac{1}{\pi} \int_{4m_{\pi^+}^2}^{\infty} ds \frac{\mathrm{Im} F_B^{\pi^{\pm}}(s)}{s - q^2} = \frac{q^2}{\pi} \int_{4m_{\pi^+}^2}^{\infty} ds \frac{\mathrm{Im} F_B^{\pi^{\pm}}(s)}{s(s - q^2)}$$

• Finally, we obtain for the radius

$$\langle r^2 \rangle_B^{\pi^+}|_{BaBar} = (0.0411(7) \text{ fm})^2 \qquad \langle r^2 \rangle_B^{\pi^+}|_{KLOE} = (0.0412(12) \text{ fm})^2$$

• In line with our expectations. Note also $\langle r^2 \rangle_B^{\pi^+} = 0.0017 \text{ fm}^2$ Lattice QCD $\langle r^2 \rangle_O^{\pi^+} = (0.648(15) \text{ fm})^2 = 0.42(2) \text{ fm}^2 \text{ (arXiv:2102.06047)}$

Lattice QCD $\langle r \rangle_Q = (0.046(13) \text{ im}) = 0.42(2) \text{ im} (arXiv:2102.00047)$ Lattice QCD $\langle r^2 \rangle_Q^{\pi^+} = 0.4298(45)_{\text{stat}}(124)_{\text{sys}} \text{ fm}^2 (arXiv:2006.05431)$

• Might be at reach for lattice in the future!

___ A word of caution .

•

• In the isospin-symmetric limit (σ = Pauli matrices)

$$\langle \pi^b | \, ar q \gamma^\mu \sigma^i q \, | \pi^a
angle = (p_a + p_b)^\mu F_i^\pi(q^2)$$

- And isospin symmetry implies $F_3^{\pi}(q^2) = F_{\pm}^{\pi}(q^2)$
- Corrections arise at $\mathcal{O}(\Delta m)$ and $F_3(q^2) \neq F_{\pm}(q^2)$ from au decays (Belle)

Section 6

Further discussions

__ Results and dissertation

- Did we just reword the well-known phenomenon of $\rho-\omega$ mixing?
- \Rightarrow Asolutely not! We realized about its connection to $F_B^{\pi^{\pm}}(q^2)$
- \Rightarrow Actually, many parametrizations $F_B^{\pi^{\pm}}(0) \neq 0$ incorrect
- Not convinced this is more than $\rho \omega$ mixing?
- $\Rightarrow \text{ Flavor basis } \quad J_u^{\mu} = J_Q^{\mu} + J_B^{\mu} \qquad J_d^{\mu} = 2J_B^{\mu} J_Q^{\mu}$ $\Rightarrow \langle r^2 \rangle_u^{\pi^+} = \langle r^2 \rangle_Q^{\pi^+} + \langle r^2 \rangle_B^{\pi^+} \qquad \langle r^2 \rangle_d^{\pi^+} = 2 \langle r^2 \rangle_B^{\pi^+} \langle r^2 \rangle_Q^{\pi^+}$ $\Rightarrow \langle r^2 \rangle_u^{\pi^+} \langle r^2 \rangle_{\mathbf{d}}^{\pi^+} = 3 \langle r^2 \rangle_B^{\pi^+}$
- Recognizing this property allows for flavor decomposition!
- \Rightarrow Proposals for (indirect) extractions; didn't realize it was possible!

Section 7

Conclusions

___ Conclusions __

- New property of the π^\pm on the table
- Model estimates around $\langle r^2
 angle_B^{\pi^+} \simeq (0.04~{
 m fm})^2$
- · Can be indirectly extracted from data despite its tiny size

$$\langle r^2 \rangle_B^{\pi^{\pm}} = (0.0411(7) \text{ fm})^2 = 0.0017 \text{ fm}^2$$
$$\langle r^2 \rangle_u^{\pi^{+}} - \langle r^2 \rangle_{\bar{\mathbf{d}}}^{\pi^{+}} = 3 \langle r^2 \rangle_B^{\pi^{+}} = 0.0051 \text{ fm}^2$$

- To be compared to $\langle r^2 \rangle_Q^\pi = (0.659(4) \text{ fm})^2 = 0.434(5) \text{ fm}^2$
- Lattice not there yet, but $\langle r^2\rangle_Q^{\pi^+}=0.4298(\textbf{45})_{\rm stat}(124)_{\rm sys}~{\rm fm}^2$
- Testing differences in u/d quarks distributions in the π^{\pm} for the first time